• Title/Summary/Keyword: eDNA

Search Result 2,318, Processing Time 0.034 seconds

Enhancement of Soluble Expression of Alginate Lyase By Molecular Chaperone in E. coli. (대장균에서 분자 chaperone에 의한 alginate lyase의 가용성 발현 증대)

  • Shin, Eun-Jung;Lee, Jae-Hyung;Park, So-Lim;Kim, Hyeung-Rak;Nam, Soo-Wa
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.132-136
    • /
    • 2007
  • When alginate lyase gene (aly) from Pseudoalteromonas elyakovii was expressed in E. coli, most of the gene product was produced as aggregated insoluble particles known as inclusion bodies. In order to produce a soluble and active form of alginate lyase, E. coli cells fore cotransformed with the plasmids designed to permit coexpression of aly together with molecular chaperones such as DnaK/DnaJ/GrpE or GroEL/ES chaperones. The results revealed that the coexpression of aly together with DnaK/DnaJ/GrpE chaperone had a marked effect on the production of this protein as a soluble and active form, presumably through facilitating correct folding of alginate lyase protein. The optimal concentration of L-arabinose for the induction of DnaK/DnaJ/GrpE chaperone was found to be 0.05 mg/ml. When DnaK/DnaJ/GrpE chaperone was coexpressed, about 34% in the total alginate lyase was produced in the soluble fraction. By addition of 10% cetylpyridinium chloride, a clear zone around the colony coexpressing aly and DnaK/DnaJ/GrpE chaperone was formed, indicating that the alginate in the medium was hydrolyzed by active alginate lyase enzyme.

The Bacteriophage λ DNA Replication Protein P Inhibits the oriC DNA- and ATP-binding Functions of the DNA Replication Initiator Protein DnaA of Escherichia coli

  • Datta, Indrani;Sau, Subrata;Sil, Alok Kumar;Mandal, Mitai C.
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.97-103
    • /
    • 2005
  • Under the condition of expression of $\lambda$ P protein at lethal level, the oriC DNA-binding activity is significantly affected in wild-type E. coli but not in the rpl mutant. In purified system, the $\lambda$ P protein inhibits the binding of both oriC DNA and ATP to the wild-type DnaA protein but not to the rpl DnaA protein. We conclude that the $\lambda$ P protein inhibits the binding of oriC DNA and ATP to the wild-type DnaA protein, which causes the inhibition of host DNA synthesis initiation that ultimately leads to bacterial death. A possible beneficial effect of this interaction of $\lambda$ P protein with E. coli DNA initiator protein DnaA for phage DNA replication has been proposed.

Development of the Filterable Water Sampler System for eDNA Filtering and Performance Evaluation of the System through eDNA Monitoring at Catchment Conduit Intake-Reservoir (eDNA 포집용 채수 필터시스템 개발과 집수매거 취수지 내에서의 성능평가)

  • Kwak, Tae-Soo;Kim, Won-Seok;Lee, Sun Ho;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.272-279
    • /
    • 2021
  • A pump-type eDNA filtering system that can control voltage and hydraulic pressure respectively has been developed, and applied a filter case that can filter out without damaging the filter. The filtering performance of the developed system was evaluated by comparing the eDNA concentration with the conventional vacuum-pressured filtering method at the catchment conduit intake reservoir. The developed system was divided into a voltage control (manual pump system) method and a pressure control (automatic pump system) method, and the pressure was measured during filtering and the pressure change of each system was compared. The voltage control method started with 65 [KPa] at the beginning of the filtering, and as the filtering time elapsed, the amount of filtrate accumulated in the filter increased, so the pressure gradually increased. As a result of controlling the pressure control method to maintain a constant pressure according to the designed algorithm, there was a difference in the width of the hydraulic pressure fluctuation during the filtering process according to the feedback time of the hydraulic pressure sensor, and it was confirmed that the pressure was converged to the target pressure. The filtering performance of the developed system was confirmed by measuring the eDNA concentration and comparing the voltage control method and the hydraulic control method with the control group. The voltage control method obtained similar results to the control group, but the hydraulic control method showed lower results than the control group. It is considered that the low eDNA concentration in the hydraulic control method is due to the large pressure deviation during filtering and maintaining a constant pressure during the filtering process. Therefore, rather than maintaining a constant pressure during filtering, it was confirmed that a voltage control method in which the pressure is gradually increased as the filtrate increases with the lapse of filtering time is suitable for collecting eDNA. As a result of comparing the average concentration of eDNA in lentic zone and lotic zone as a control group, it was found to be 96.2 [ng µL-1] and 88.4 [ng µL-1l], respectively. The result of comparing the average concentration of eDNA by the pump method was also high in the lentic zone sample as 90.7 [ng µL-1] and 74.8 [ng µL-1] in the lentic zone and the lotic zone, respectively. The high eDNA concentration in the lentic zone is thought to be due to the influence of microorganisms including the remaining eDNA.

Effect of Molecular Chaperones on the Soluble Expression of Alginate Lyase in E. coli

  • Shin, Eun-Jung;Park, So-Lim;Jeon, Sung-Jong;Lee, Jin-Woo;Kim, Young-Tae;Kim, Yeon-Hee;Nam, Soo-Wan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.414-419
    • /
    • 2006
  • When the alginate lyase gene (aly) from Pseudoalteromonas elyakovii was expressed in E. coli, most of the gene product was organized as aggregated insoluble particles known as inclusion bodies. To examine the effects of chaperones on soluble and nonaggregated form of alginate lyase in E. coli, we constructed plasm ids designed to permit the coexpression of aly and the DnaK/DnaJ/GrpE or GroEL/ES chaperones. The results indicate that coexpression of aly with the DnaK/DnaJ/GrpE chaperone together had a marked effect on the yield alginate lyase as a soluble and active form of the enzyme. It is speculated this result occurs through facilitation of the correct folding of the protein. The optimal concentration of L-arabinose required for the induction of the DnaK/DnaJ/GrpE chaperone was found to be 0.05mg/mL. An analysis of the protein bands on SDS-PAGE gel indicated that at least 37% of total alginate lyase was produced in the soluble fraction when the DnaK/DnaJ/GrpE chaperone was coexpressed.

DNA Damage by X-ray and Low Energy Electron Beam Irradiation (X선과 저에너지 전자선에 의한 DNA 손상)

  • Park, Yeun-Soo;Noh, Hyung-Ah;Cho, Hyuck;Dumont, Ariane;Ptasinska, Sylwia;Bass, Andrew D.;Sanche, Leon
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.2
    • /
    • pp.53-59
    • /
    • 2008
  • We observed DNA damages as a function of mean absorbed dose to identify the indirect effect of high-energy radiation such as x-ray. Monolayer films of lyophilized pGEM-3Zf(-) plasmid DNA deposited on tantalum foils were exposed to Al $K{\alpha}$ X-ray (1.5 keV) for 0, 3, 7 and 10 min, respectively, in a condition of ultrahigh vacuum state. We compared DNA damages by X-ray irradiation with those by 3 eV electron irradiation. X-ray photons produced low-energy electrons (mainly below 20 eV) from the tantalum foils and DNA damage was induced chiefly by these electrons. For electron beam irradiation, DNA damage was directly caused by 3 eV electrons. Irradiated DNA was analyzed by agarose gel electrophoresis and quantified by ImagaQuant program. The quantities of remained supercoiled DNA after irradiation were linearly decreased as a function of mean absorbed dose. On the other hand, the yields of nicked circular (single strand break, SSB) and interduplex crosslinked form 1 DNA were linearly increased as a function of mean absorbed dose. From this study, it was confirmed that DNA damage was also induced by low energy electrons ($0{\sim}10\;eV$) even below threshold energies for the ionization of DNA.

The Effects on Escherichia coli and Plasmid DNA Using Ultrasoft X-ray (Ultrasoft X-ray의 Escherichia coli균과 plasmid DNA에 대한 영향)

  • ;;;;;Seiya Chiba;Atsuo Kimura
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.84-87
    • /
    • 2000
  • We studied the effect of ultrasoft X-ray obtained from the Pohang Light Source (PLS), on the mutation of E. coli and the damage of plasmid. After irradiation, the supercoiled plasmid DNA converted to the relaxed-form, and then to the linear-form. We transformed the irradiated plasmid DNA and isolated $\beta$-galactosidase mutants. We also isolated $\beta$-galactosidase mutants from the directly irradiated cells. There were preferred mutational sites on DNA induced by ultrasoft X-ray.

  • PDF

Ubiquitin E3 ligases in cancer: somatic mutation and amplification

  • Eun-Hye Jo;Mi-Yeon Kim;Hyung-Ju Lee;Hee-Sae Park
    • BMB Reports
    • /
    • v.56 no.5
    • /
    • pp.265-274
    • /
    • 2023
  • Defects in DNA double-strand break (DSB) repair signaling permit cancer cells to accumulate genomic alterations that confer their aggressive phenotype. Nevertheless, tumors depend on residual DNA repair abilities to survive the DNA damage induced by genotoxic stress. This is why only isolated DNA repair signaling is inactivated in cancer cells. DNA DSB repair signaling contributes to general mechanism for various types of lesions in diverse cell cycle phases. DNA DSB repair genes are frequently mutated and amplified in cancer; however, limited data exist regarding the overall genomic prospect and functional result of these modifications. We list the DNA repair genes and related E3 ligases. Mutation and expression frequencies of these genes were analyzed in COSMIC and TCGA. The 11 genes with a high frequency of mutation differed between cancers, and mutations in many DNA DSB repair E3 ligase genes were related to a higher total mutation burden. DNA DSB repair E3 ligase genes are involved in tumor suppressive or oncogenic functions, such as RNF168 and FBXW7, by assisting the functionality of these genomic alterations. DNA damage response-related E3 ligases, such as RNF168, FBXW7, and HERC2, were generated with more than 10% mutation in several cancer cells. This study provides a broad list of candidate genes as potential biomarkers for genomic instability and novel therapeutic targets in cancer. As a DSB related proteins considerably appear the possibilities for targeting DNA repair defective tumors or hyperactive DNA repair tumors. Based on recent research, we describe the relationship between unstable DSB repairs and DSB-related E3 ligases.

Molecular cloning and foreign gene expression of restriction endonuclease fragments of the Hc nuclear polyhedrosis virus DNA (Hc nuclear polyhedrosis virus DNA 제한효소절편의 molecular cloning 과 외래 유전자 발현)

  • Lee, Keun-Kwang
    • Journal of fish pathology
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 1995
  • Hc nuclear polyhedrosis virus DNA genome was digested with EcoRI endonuclease, these partial fragments were recombined into the pUC8 plasmid vector and transformed in E. coli JM 83 cell. The genome DNA has 24 EcoRI fragments and 12 fragments of them were subcloned. The four recombinants were named as eNP-O, eNP-Q, eNP-R and eNP-S. The expression of foregin gene of the recombinants was investigated by analysing protein patterns on the SDS-PAGE. The eNP-O, eNP-Q and eNP-R were expressed a different weight of protein as comparision with potypeptide bands of E. coli JM 83 host cell.

  • PDF

The Mutation that Makes Escherichia coli Resistant to λ P Gene-mediated Host Lethality Is Located within the DNA Initiator Gene dnaA of the Bacterium

  • Datta, Indrani;Banik-Maiti, Sarbani;Adhikari, Lopa;Sau, Subrata;Das, Niranjan;Mandal, Nitai Chandra
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.89-96
    • /
    • 2005
  • Earlier, we reported that the bacteriophage $\lambda$ P gene product is lethal to Escherichia coli, and the E. coli rpl mutants are resistant to this $\lambda$ P gene-mediated lethality. In this paper, we show that under the $\lambda$ P gene-mediated lethal condition, the host DNA synthesis is inhibited at the initiation step. The rpl8 mutation maps around the 83 min position in the E. coli chromosome and is 94% linked with the dnaA gene. The rpl8 mutant gene has been cloned in a plasmid. This plasmid clone can protect the wild-type E. coli from $\lambda$ P gene-mediated killing and complements E. coli dnaAts46 at $42^{\circ}C$. Also, starting with the wild-type dnaA gene in a plasmid, the rpl-like mutations have been isolated by in vitro mutagenesis. DNA sequencing data show that each of the rpl8, rpl12 and rpl14 mutations has changed a single base in the dnaA gene, which translates into the amino acid changes N313T, Y200N, and S246T respectively within the DnaA protein. These results have led us to conclude that the rpl mutations, which make E. coli resistant to $\lambda$ P gene-mediated host lethality, are located within the DNA initiator gene dnaA of the host.

Review and application of environmental DNA (eDNA) investigation of terrestrial species in urban ecosystem (도시 내 육상 생물종 모니터링을 위한 환경DNA 리뷰 및 적용)

  • Kim, Whee-Moon;Kim, Seoung-Yeal;Park, Il-Su;Lee, Hyun-Jung;Kim, Kyeong-Tae;Kim, Young;Kim, Hye-Joung;Kwak, Min-Ho;Lim, Tae-Yang;Park, Chan;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.2
    • /
    • pp.69-89
    • /
    • 2020
  • Scientific trust and quantification of traditional species investigation and results that have been used in ecology for decades has always been a problem and concern for ecologists. Global ecologists have proposed DNA-based species investigation studies to find answers to problems. In this study, we reviewed the global trend of research on environmental DNA(eDNA), which is a method for monitoring species by detecting DNA of organisms naturally mixed in environmental samples such as water, soil, and feces. The first eDNA research confirmed the possibility of species investigation at the molecular level, and commercialization of NGS(Next Generation Sequencing) and DNA metabarcoding elicits efficient and quantitative species investigation results, and eDNA research is increasing in the filed of ecology. In this study, mammals and birds were detected using MiMammal universal primers from 23 samples(3 natural reserves; 20 water bowls) out of 4 patches to verify eDNA for urban ecosystems in Suwon, and eDNA was verified by performing camera trapping and field survey. Most terrestrial species were detected through eDNA, and particularly, mice(Mus musculus), and Vinous-throated Parrotbill (Sinosuthora webbiana) were identified only with eDNA, It has been confirmed to be highly effective by investigating techniques for small and internal species. However, due to the lack of resolution of the primer, weasels(Mustela sibirica) and squirrels(Melanochromis auratus) were not detected, and it was confirmed that the traditional investigation method was effective only for a few species, such as Mogera robusta(Mogera robusta). Therefore, it is judged that the effects of species investigation can be maximized only when eDNA is combined with traditional field survey and Camera trapping to complement each other.