DOI QR코드

DOI QR Code

Ubiquitin E3 ligases in cancer: somatic mutation and amplification

  • Eun-Hye Jo (Department of Biological Sciences and Technology, Chonnam National University) ;
  • Mi-Yeon Kim (Department of Biological Sciences and Technology, Chonnam National University) ;
  • Hyung-Ju Lee (Department of Biological Sciences and Technology, Chonnam National University) ;
  • Hee-Sae Park (Department of Biological Sciences and Technology, Chonnam National University)
  • Received : 2023.02.24
  • Accepted : 2023.04.20
  • Published : 2023.05.31

Abstract

Defects in DNA double-strand break (DSB) repair signaling permit cancer cells to accumulate genomic alterations that confer their aggressive phenotype. Nevertheless, tumors depend on residual DNA repair abilities to survive the DNA damage induced by genotoxic stress. This is why only isolated DNA repair signaling is inactivated in cancer cells. DNA DSB repair signaling contributes to general mechanism for various types of lesions in diverse cell cycle phases. DNA DSB repair genes are frequently mutated and amplified in cancer; however, limited data exist regarding the overall genomic prospect and functional result of these modifications. We list the DNA repair genes and related E3 ligases. Mutation and expression frequencies of these genes were analyzed in COSMIC and TCGA. The 11 genes with a high frequency of mutation differed between cancers, and mutations in many DNA DSB repair E3 ligase genes were related to a higher total mutation burden. DNA DSB repair E3 ligase genes are involved in tumor suppressive or oncogenic functions, such as RNF168 and FBXW7, by assisting the functionality of these genomic alterations. DNA damage response-related E3 ligases, such as RNF168, FBXW7, and HERC2, were generated with more than 10% mutation in several cancer cells. This study provides a broad list of candidate genes as potential biomarkers for genomic instability and novel therapeutic targets in cancer. As a DSB related proteins considerably appear the possibilities for targeting DNA repair defective tumors or hyperactive DNA repair tumors. Based on recent research, we describe the relationship between unstable DSB repairs and DSB-related E3 ligases.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. NRF-2022R1H1A2091883, NRF2019R1A2C1007197).

References

  1. Swatek KN and Komander D (2016) Ubiquitin modifications. Cell Res 26, 399-422 https://doi.org/10.1038/cr.2016.39
  2. Lukas J, Lukas C and Bartek J (2011) More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 13, 1161-1169 https://doi.org/10.1038/ncb2344
  3. Li W, Bengtson MH, Ulbrich A et al (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One 3, e1487
  4. Buetow L and Huang DT (2016) Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol 17, 626-642 https://doi.org/10.1038/nrm.2016.91
  5. Metzger MB, Hristova VA and Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125, 531-537 https://doi.org/10.1242/jcs.091777
  6. Sharma N, Zhu Q, Wani G, He J, Wang QE and Wani AA (2014) USP3 counteracts RNF168 via deubiquitinating H2A and γH2AX at lysine 13 and 15. Cell Cycle 13, 106-114 https://doi.org/10.4161/cc.26814
  7. Critchlow SE, Bowater RP and Jackson SP (1997) Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol 7, 588-598 https://doi.org/10.1016/S0960-9822(06)00258-2
  8. Davis AJ and Chen DJ (2013) DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2, 130-143
  9. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79, 181-211 https://doi.org/10.1146/annurev.biochem.052308.093131
  10. Caron P, Pankotai T, Wiegant WW et al (2019) WWP2 ubiquitylates RNA polymerase II for DNA-PK-dependent transcription arrest and repair at DNA breaks. Genes Dev 33, 684-704 https://doi.org/10.1101/gad.321943.118
  11. Gatti M, Pinato S, Maspero E, Soffientini P, Polo S and Penengo L (2012) A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase. Cell Cycle 11, 2538-2544 https://doi.org/10.4161/cc.20919
  12. Nowsheen S, Aziz K, Aziz A et al (2018) L3MBTL2 orchestrates ubiquitin signalling by dictating the sequential recruitment of RNF8 and RNF168 after DNA damage. Nat Cell Biol 20, 455-464 https://doi.org/10.1038/s41556-018-0071-x
  13. Oestergaard VH, Pentzold C, Pedersen RT et al (2012) RNF8 and RNF168 but not HERC2 are required for DNA damage-induced ubiquitylation in chicken DT40 cells. DNA Repair (Amst) 11, 892-905 https://doi.org/10.1016/j.dnarep.2012.08.005
  14. Pei H, Zhang L, Luo K et al (2011) MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 470, 124-128 https://doi.org/10.1038/nature09658
  15. Densham RM, Garvin AJ, Stone HR et al (2016) Human BRCA1-BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection. Nat Struct Mol Biol 23, 647-655 https://doi.org/10.1038/nsmb.3236
  16. Zhang F, Ma J, Wu J et al (2009) PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol 19, 524-529 https://doi.org/10.1016/j.cub.2009.02.018
  17. Orthwein A, Noordermeer SM, Wilson MD et al (2015) A mechanism for the suppression of homologous recombination in G1 cells. Nature 528, 422-426 https://doi.org/10.1038/nature16142
  18. Yu X, Fu S, Lai M, Baer R and Chen J (2006) BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev 20, 1721-1726 https://doi.org/10.1101/gad.1431006
  19. Ismail IH, Gagne JP, Genois MM et al (2015) The RNF138 E3 ligase displaces Ku to promote DNA end resection and regulate DNA repair pathway choice. Nat Cell Biol 17, 1446-1457 https://doi.org/10.1038/ncb3259
  20. Wang Y, Deng O, Feng Z et al (2016) RNF126 promotes homologous recombination via regulation of E2F1-mediated BRCA1 expression. Oncogene 35, 1363-1372 https://doi.org/10.1038/onc.2015.198
  21. Ishida N, Nakagawa T, Iemura SI et al (2017) Ubiquitylation of Ku80 by RNF126 promotes completion of nonhomologous end joining-mediated DNA repair. Mol Cell Biol 37, e00347-00316
  22. Zhang L, Wang Z, Shi R et al (2018) RNF126 quenches RNF168 function in the DNA damage response. Genomics Proteomics Bioinformatics 16, 428-438 https://doi.org/10.1016/j.gpb.2018.07.004
  23. Jackson SP and Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461, 1071-1078 https://doi.org/10.1038/nature08467
  24. Coster G and Goldberg M (2010) The cellular response to DNA damage: a focus on MDC1 and its interacting proteins. Nucleus 1, 166-178 https://doi.org/10.4161/nucl.11176
  25. Iacovoni JS, Caron P, Lassadi I et al (2010) High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. Embo J 29, 1446-1457 https://doi.org/10.1038/emboj.2010.38
  26. Kozlov SV, Graham ME, Jakob B et al (2011) Autophosphorylation and ATM activation: additional sites add to the complexity. J Biol Chem 286, 9107-9119 https://doi.org/10.1074/jbc.M110.204065
  27. Bartocci C and Denchi EL (2013) Put a RING on it: regulation and inhibition of RNF8 and RNF168 RING finger E3 ligases at DNA damage sites. Front Genet 4, 128
  28. Nakada S (2016) Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice. J Radiat Res 57 Suppl 1, i33-i40 https://doi.org/10.1093/jrr/rrw027
  29. Wang Z, Yin H, Zhang Y et al (2014) miR-214-mediated downregulation of RNF8 induces chromosomal instability in ovarian cancer cells. Cell Cycle 13, 3519-3528 https://doi.org/10.4161/15384101.2014.958413
  30. Lee HJ, Li CF, Ruan D et al (2016) The DNA damage transducer RNF8 facilitates cancer chemoresistance and progression through twist activation. Mol Cell 63, 1021-1033 https://doi.org/10.1016/j.molcel.2016.08.009
  31. Moyal L, Lerenthal Y, Gana-Weisz M et al (2011) Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol Cell 41, 529-542
  32. Nakamura K, Kato A, Kobayashi J et al (2011) Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell 41, 515-528 https://doi.org/10.1016/j.molcel.2011.02.002
  33. Kim J, Guermah M, McGinty RK et al (2009) RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137, 459-471 https://doi.org/10.1016/j.cell.2009.02.027
  34. Pavri R, Zhu B, Li G et al (2006) Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125, 703-717 https://doi.org/10.1016/j.cell.2006.04.029
  35. Shiloh Y, Shema E, Moyal L and Oren M (2011) RNF20-RNF40: a ubiquitin-driven link between gene expression and the DNA damage response. FEBS Lett 585, 2795-2802 https://doi.org/10.1016/j.febslet.2011.07.034
  36. Wu C, Cui Y, Liu X, Zhang F, Lu L-Y and Yu X (2020) The RNF20/40 complex regulates p53-dependent gene transcription and mRNA splicing. J Mol Cell Biol 12, 113-124 https://doi.org/10.1093/jmcb/mjz045
  37. Joukov V, Groen AC, Prokhorova T et al (2006) The BRCA1/ BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 127, 539-552 https://doi.org/10.1016/j.cell.2006.08.053
  38. Kalb R, Mallery Donna L, Larkin C, Huang Jeffrey TJ and Hiom K (2014) BRCA1 Is a histone-H2A-specific ubiquitin ligase. Cell Rep 8, 999-1005 https://doi.org/10.1016/j.celrep.2014.07.025
  39. Piek JM, Torrenga B, Hermsen B et al (2003) Histopathological characteristics of BRCA1- and BRCA2-associated intraperitoneal cancer: a clinic-based study. Fam Cancer 2, 73-78 https://doi.org/10.1023/A:1025700807451
  40. Moschetta M, George A, Kaye SB and Banerjee S (2016) BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer. Ann Oncol 27, 1449-1455 https://doi.org/10.1093/annonc/mdw142
  41. Pal T, Permuth-Wey J, Betts JA et al (2005) BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer 104, 2807-2816 https://doi.org/10.1002/cncr.21536
  42. Zavitsanos PJ, Wazer DE, Hepel JT, Wang Y, Singh K and Leonard KL (2018) BRCA1 mutations associated with increased risk of brain metastases in breast cancer: a 1: 2 matched-pair analysis. Am J Clin Oncol 41, 1252-1256 https://doi.org/10.1097/COC.0000000000000466
  43. Zhi X, Zhao D, Wang Z et al (2013) E3 ubiquitin ligase RNF126 promotes cancer cell proliferation by targeting the tumor suppressor p21 for ubiquitin-mediated degradation. Cancer Res 73, 385-394 https://doi.org/10.1158/0008-5472.CAN-12-0562
  44. Migita K, Matsumoto S, Wakatsuki K et al (2020) RNF126 as a marker of prognosis and proliferation of gastric cancer. Anticancer Res 40, 1367-1374 https://doi.org/10.21873/anticanres.14078
  45. Wang S, Wang T, Wang L, Zhong L and Li K (2020) Overexpression of RNF126 promotes the development of colorectal cancer via enhancing p53 ubiquitination and degradation. Onco Targets Ther 13, 10917-10929 https://doi.org/10.2147/OTT.S271855
  46. Yang X, Pan Y, Qiu Z et al (2018) RNF126 as a biomarker of a poor prognosis in invasive breast cancer and CHEK1 inhibitor efficacy in breast cancer cells. Clin Cancer Res 24, 1629-1643 https://doi.org/10.1158/1078-0432.CCR-17-2242
  47. Lu Y, Han D, Liu W et al (2018) RNF138 confers cisplatin resistance in gastric cancer cells via activating Chk1 signaling pathway. Cancer Biol Ther 19, 1128-1138 https://doi.org/10.1080/15384047.2018.1480293
  48. Kim W, Youn H, Lee S et al (2018) RNF138-mediated ubiquitination of rpS3 is required for resistance of glioblastoma cells to radiation-induced apoptosis. Exp Mol Med 50, e434
  49. Morris JR and Solomon E (2004) BRCA1 : BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet 13, 807-817 https://doi.org/10.1093/hmg/ddh095
  50. Pinato S, Scandiuzzi C, Arnaudo N, Citterio E, Gaudino G and Penengo L (2009) RNF168, a new RING finger, MIUcontaining protein that modifies chromatin by ubiquitination of histones H2A and H2AX. BMC Mol Biol 10, 55
  51. Gatti M, Pinato S, Maiolica A et al (2015) RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep 10, 226-238 https://doi.org/10.1016/j.celrep.2014.12.021
  52. Chroma K, Mistrik M, Moudry P et al (2017) Tumors overexpressing RNF168 show altered DNA repair and responses to genotoxic treatments, genomic instability and resistance to proteotoxic stress. Oncogene 36, 2405-2422 https://doi.org/10.1038/onc.2016.392
  53. Patel PS, Abraham KJ, Guturi KKN et al (2021) RNF168 regulates R-loop resolution and genomic stability in BRCA1/2- deficient tumors. J Clin Invest 131, e140105
  54. Panier S, Ichijima Y, Fradet-Turcotte A et al (2012) Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks. Mol Cell 47, 383-395 https://doi.org/10.1016/j.molcel.2012.05.045
  55. Kitevski-LeBlanc J, Fradet-Turcotte A, Kukic P et al (2017) The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage. eLife 6, e23872
  56. Stewart GS, Stankovic T, Byrd PJ et al (2007) RIDDLE immunodeficiency syndrome is linked to defects in 53BP1- mediated DNA damage signaling. Proc Natl Acad Sci U S A 104, 16910-16915 https://doi.org/10.1073/pnas.0708408104
  57. An L, Jiang Y, Ng HHW et al (2017) Dual-utility NLS drives RNF169-dependent DNA damage responses. Proc Natl Acad Sci U S A 114, E2872-E2881 https://doi.org/10.1073/pnas.1616602114
  58. Bai C, Sen P, Hofmann K et al (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263-274 https://doi.org/10.1016/S0092-8674(00)80098-7
  59. Craig KL and Tyers M (1999) The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol 72, 299-328 https://doi.org/10.1016/S0079-6107(99)00010-3
  60. Wu J, Zhang X, Zhang L et al (2012) Skp2 E3 ligase integrates ATM activation and homologous recombination repair by ubiquitinating NBS1. Mol Cell 46, 351-361 https://doi.org/10.1016/j.molcel.2012.02.018
  61. Li C, Du L, Ren Y et al (2019) SKP2 promotes breast cancer tumorigenesis and radiation tolerance through PDCD4 ubiquitination. J Exp Clin Cancer Res 38, 76
  62. Nakayama KI and Nakayama K (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6, 369-381 https://doi.org/10.1038/nrc1881
  63. Welcker M and Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8, 83-93 https://doi.org/10.1038/nrc2290
  64. Zhang Q, Karnak D, Tan M, Lawrence TS, Morgan MA and Sun Y (2016) FBXW7 facilitates nonhomologous endjoining via K63-linked polyubiquitylation of XRCC4. Mol Cell 61, 419-433
  65. Matsuoka S, Oike Y, Onoyama I et al (2008) Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev 22, 986-991 https://doi.org/10.1101/gad.1621808
  66. Thompson BJ, Jankovic V, Gao J et al (2008) Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J Exp Med 205, 1395-1408 https://doi.org/10.1084/jem.20080277
  67. Reavie L, Della Gatta G, Crusio K et al (2010) Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase-substrate complex. Nat Immunol 11, 207-215 https://doi.org/10.1038/ni.1839
  68. Siu KT, Xu Y, Swartz KL et al (2014) Chromosome instability underlies hematopoietic stem cell dysfunction and lymphoid neoplasia associated with impaired Fbw7-mediated cyclin E regulation. Mol Cell Biol 34, 3244-3258 https://doi.org/10.1128/MCB.01528-13
  69. Loeb KR, Kostner H, Firpo E et al (2005) A mouse model for cyclin E-dependent genetic instability and tumorigenesis. Cancer Cell 8, 35-47 https://doi.org/10.1016/j.ccr.2005.06.010
  70. Minella AC, Loeb KR, Knecht A et al (2008) Cyclin E phosphorylation regulates cell proliferation in hematopoietic and epithelial lineages in vivo. Genes Dev 22, 1677-1689 https://doi.org/10.1101/gad.1650208
  71. Cubillos-Rojas M, Amair-Pinedo F, Peiro-Jordan R, Bartrons R, Ventura F and Rosa JL (2014) The E3 ubiquitin protein ligase HERC2 modulates the activity of tumor protein p53 by regulating its oligomerization. J Biol Chem 289, 14782-14795 https://doi.org/10.1074/jbc.M113.527978
  72. Garcia-Cano J, Sanchez-Tena S, Sala-Gaston J et al (2020) Regulation of the MDM2-p53 pathway by the ubiquitin ligase HERC2. Mol Oncol 14, 69-86 https://doi.org/10.1002/1878-0261.12592
  73. Bekker-Jensen S and Mailand N (2010) Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst) 9, 1219-1228 https://doi.org/10.1016/j.dnarep.2010.09.010
  74. Bonanno L, Costa C, Majem M et al (2016) Combinatory effect of BRCA1 and HERC2 expression on outcome in advanced non-small-cell lung cancer. BMC Cancer 16, 312
  75. Yuan J, Luo K, Deng M et al (2014) HERC2-USP20 axis regulates DNA damage checkpoint through Claspin. Nucleic Acids Res 42, 13110-13121 https://doi.org/10.1093/nar/gku1034
  76. Laino AM, Berry EG, Jagirdar K et al (2018) Iris pigmented lesions as a marker of cutaneous melanoma risk: an Australian case-control study. Br J Dermatol 178, 1119-1127 https://doi.org/10.1111/bjd.16323
  77. Johansson P, Klein-Hitpass L, Choidas A et al (2018) SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia. Blood Cancer J 8, 11
  78. Suh YJ, Choe JY and Park HJ (2017) Malignancy in pheochromocytoma or paraganglioma: integrative analysis of 176 cases in TCGA. Endocr Pathol 28, 159-164 https://doi.org/10.1007/s12022-017-9479-2
  79. Hopkins BD, Hodakoski C, Barrows D, Mense SM and Parsons RE (2014) PTEN function: the long and the short of it. Trends Biochem Sci 39, 183-190 https://doi.org/10.1016/j.tibs.2014.02.006
  80. Ma S and Kosorok MR (2010) Detection of gene pathways with predictive power for breast cancer prognosis. BMC Bioinformatics 11, 1
  81. Subik K, Shu L, Wu C et al (2012) The ubiquitin E3 ligase WWP1 decreases CXCL12-mediated MDA231 breast cancer cell migration and bone metastasis. Bone 50, 813-823 https://doi.org/10.1016/j.bone.2011.12.022
  82. Xu SQ, Qin Y, Pan DB et al (2016) Inhibition of WWP2 suppresses proliferation, and induces G1 cell cycle arrest and apoptosis in liver cancer cells. Mol Med Rep 13, 2261-2266 https://doi.org/10.3892/mmr.2016.4771
  83. Qin Y, Wang CJ, Ye HL et al (2022) WWP2 overexpression inhibits the antitumor effects of doxorubicin in hepatocellular carcinoma. Cell Biol Int 46, 1682-1692 https://doi.org/10.1002/cbin.11856
  84. Fang X, Huang Z, Zhai K et al (2021) Inhibiting DNA-PK induces glioma stem cell differentiation and sensitizes glioblastoma to radiation in mice. Sci Transl Med 13, eabc7275
  85. Kolas NK, Chapman JR, Nakada S et al (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318, 1637-1640 https://doi.org/10.1126/science.1150034
  86. Thorslund T, Ripplinger A, Hoffmann S et al (2015) Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature 527, 389-393 https://doi.org/10.1038/nature15401
  87. Polanowska J, Martin JS, Garcia-Muse T, Petalcorin MI and Boulton SJ (2006) A conserved pathway to activate BRCA1-dependent ubiquitylation at DNA damage sites. Embo J 25, 2178-2188 https://doi.org/10.1038/sj.emboj.7601102
  88. Lee NS, Chang HR, Kim S et al (2018) Ring finger protein 126 (RNF126) suppresses ionizing radiation-induced p53-binding protein 1 (53BP1) focus formation. J Biol Chem 293, 588-598 https://doi.org/10.1074/jbc.M116.765602
  89. Schmidt CK, Galanty Y, Sczaniecka-Clift M et al (2015) Systematic E2 screening reveals a UBE2D-RNF138-CtIP axis promoting DNA repair. Nat Cell Biol 17, 1458-1470 https://doi.org/10.1038/ncb3260
  90. Mattiroli F, Vissers JH, van Dijk WJ et al (2012) RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell 150, 1182-1195 https://doi.org/10.1016/j.cell.2012.08.005
  91. Chen J, Feng W, Jiang J, Deng Y and Huen MSY (2012) Ring finger protein RNF169 antagonizes the ubiquitindependent signaling cascade at sites of DNA damage. J Biol Chem 287, 27715-27722 https://doi.org/10.1074/jbc.M112.373530
  92. Poulsen M, Lukas C, Lukas J, Bekker-Jensen S and Mailand N (2012) Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks. J Cell Biol 197, 189-199  https://doi.org/10.1083/jcb.201109100