Objectives: This research has been conducted in order to conduct sex education using E-Learning which is currently taught to students of women's high school. 138 students at women's high school in Inchon were applied, and then they were divided two different groups: a comparison group of 69 students, a control group of 69 students. Method: A questionnaire used by the literature studies. After verifying content validity, it was modified and supplemented in this way: sex knowledge was 23, and sex attitude 25. Results: 1) Comparison group will show increased marks on sex knowledge after the education than before whereas those from control group. 2) Comparison group will show increased marks on sex attitude after the education than before whereas those from control group. Conclusion: From the results of this research, it can be said that the sex education using E-Learning was the most effective method in improving the sex knowledge and attitude of students at women's high school. Therefore, it is advisable that the sex education methods using E-Learning should be developed and applied continuously.
Five and above engineering courses were selected from each of exemplary international MOOC platforms, and common e-learning design strategies were drawn out through observing the courses and analyzing the course elements. By finding out both macro(platform) and micro(content) levels of designing strategies, this study suggests the direction for designing engineering courses incorporating e-learning nationally. The major trend of current e-learning design is to provide bite-sized contents rapidly created and to deploy instructional strategies for promoting student participation in learning and diverse and contextualized learning experiences.
With the availability of real-time educational data collection and analysis techniques, the education paradigm is shifting from educator-centric to data-driven lectures. However, most offline and online education frameworks collect students' feedback from question-answering data that can summarize their understanding but requires instructor's attention when students need additional help during lectures. This paper proposes a content restructure recommendation framework based on collected student feedback. We list the types of student feedback and implement a web-based framework that collects both implicit and explicit feedback for content restructuring. With a case study of four-week lectures with 50 students, we analyze the pattern of student feedback and quantitatively validate the effect of the proposed content restructuring measured by the level of student engagement.
Journal of the Korea Society of Computer and Information
/
v.15
no.2
/
pp.135-146
/
2010
In this paper, we propose an Recommendation System for supporting self-directed learning on e-learning marketplace. The key idea of this system is recommendation system using revised collaborative filtering to support marketplace. Exisiting collaborative filtering method consists of 3 stages as preparing low data, building familiar customer group by selecting nearest neighbor, creating recommendation list. This study designs recommendation system to support self-directed learning by using collaborative filtering added nearest neighbor learning course that considered industry and learning level. This service helps to select right learning course to learner in industry. Recommendation System can be built by many method and to recommend the service content including explicit properties using revised collaborative filtering method can solve limitations in existing content recommendation.
In this paper, we propose a Scorm-based Sequencing & Navigation Model for Collaborative Learning. It is an e-Learning process control model that is used to efficiently and graphically defining Scorm's content aggregation model and its sequencing prerequistites through a formal approach. To define a process based model uses the expanded ICN(Information Control Net) model. which is called SCOSNCN(SCO Sequencing & Navigation Control Net). We strongly believe that the process-driven model delivers a way of much more convenient content aggregating work and system, in terms of not only defining the intended sequence and ordering of learning activities, but also building the runtime environment for sequencing and navigation of learning activities and experiences.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.8
/
pp.2895-2912
/
2014
Content-based image retrieval has been the most important technique for managing huge amount of images. The fundamental yet highly challenging problem in this field is how to measure the content-level similarity based on the low-level image features. The primary difficulties lie in the great variance within images, e.g. background, illumination, viewpoint and pose. Intuitively, an ideal similarity measure should be able to adapt the data distribution, discover and highlight the content-level information, and be robust to those variances. Motivated by these observations, we in this paper propose a probabilistic similarity learning approach. We first model the distribution of low-level image features and derive the free energy kernel (FEK), i.e., similarity measure, based on the distribution. Then, we propose a learning approach for the derived kernel, under the criterion that the kernel outputs high similarity for those images sharing the same class labels and output low similarity for those without the same label. The advantages of the proposed approach, in comparison with previous approaches, are threefold. (1) With the ability inherited from probabilistic models, the similarity measure can well adapt to data distribution. (2) Benefitting from the content-level hidden variables within the probabilistic models, the similarity measure is able to capture content-level cues. (3) It fully exploits class label in the supervised learning procedure. The proposed approach is extensively evaluated on two well-known databases. It achieves highly competitive performance on most experiments, which validates its advantages.
The purpose of this study was to analyze job of e-learning quality managers based on the DACUM(Developing A Curriculum) method and to construct a task model of e-learning quality managers. A DACUM committee was composed to analyze job of e-learning quality managers and the committee members were total 12, those are one facilitator, 9 panel members, one recorder and one coordinator. The major findings of this study were as the followings; first, the number of job duty of e-learning quality managers were total 7, which were service planing, infrastructure building, of content developing, service evaluating, administration for quality managing, self-improvement. And total tasks of job of e-learning quality managers were 61. Second, 14 knowledge, 21 skill, 19 attitudes for e-learning quality managers were analyzed. Third, a task model of e-learning quality managers was constructed based on the results of DACUM job analysis.
In the recent e-learning environment, avatars are often used to help learners get familiar with the contents, which is ultimately to motivate them to study more. Therefore, it is important to investigate whether avatars have actually the desirable effect on users of e-learning materials. Surprisingly, however, no extensive study has been conducted on this crucial issue Accordingly, main objectives this study are summarized as follows. First, we need to gain better understanding of how much learners' trust towards avatars (termed as "avatar trust") is transferred to learners' trust towards e-learning contents (termed as "contents trust"). Second, we need to investigate how much learners' personal relationships with avatars as well as learning behaviors change depending on avatar types (attractive vs. professional) and contents complexity (easy vs. difficult). As described in the study objectives, in order for us to analyze empirical data more systematically, we classified avatar types into two: "attractive" and "professional;" the contents are categorized as either "easy" or "difficult." Therefore, it is essential for this study to build a prototype e-learning website on which our research purpose can be realized and tested effectively with proper avatar types and e-learning contents. For this purpose, we built a prototype e-learning website, in which avatars are invited from currently working avatar instructors used in real-world e-learning websites, and e-learning contents are adapted from real-world contents about Java programming topic, which have been proved to have shown high quality and reliability. Our research method includes questionnaire survey by inviting a number of valid respondents comprised of office workers who are believed to have high demands for the e-learning contents as well as those who have previous experience with avatar instructors. Respondents were given one of the four e-learning experiment conditions (2 avatar types x 2 contents types) on a random basis. Each experimental e-learning condition is framed to have the same quality but different avatar type and content complexity. Then the respondents are asked to fill out the survey form which has questions about avatar trust, contents trust, personal relationships with avatar, and learning behavior, among others. Regarding the constructs used in research model, we based them rigorously on previous studies. For example, we used six constructs such as behavior to give information (BGI), behavior to obtain information (BOI), need for inclusion wanted, need for control wanted, contents trust, and avatar trust. To measure them, 7-Likert scales were used in the questionnaire. E-learning performance was measured indirectly through two constructs such as BGI and BOI. Six constructs used in the research model were adopted and revised from the FIRO-B model suggested by Schutz. Empirical results are as follows: First, professional avatars are more effective for difficult contents, while attractive avatars were not as effective for easy contents. Second, our study results ascertained that avatar trust transfers to contents trust regardless of avatar types and contents complexity.
practice in operating room nursing and to examine the learning effects. Methods: Based on content and need analysis, 9 learning modules were developed for nursing care in operating rooms and with operating equipment. To verify the effects of the program, a quasi- experimental pretest-posttest control group design was employed. The participants in this study were 74 third-year nursing students (34 in the experimental and 40 in the control group) from a junior college in G-city, Korea, who were engaged in a one week clinical practicum in an operating unit. Frequencies, $X^2$-test and t-test with the SPSS program 17.0 were used to analyze the data. Results: Knowledge was significantly higher in the experimental group compared to the control group (p=.018). However, there was no significant difference between the two groups in self-directed learning. The experimental group had significantly higher motivation toward learning, which was examined posttest only (p=.027). Conclusion: These results indicate that the implementation of an e-Learning program needs to be continued as an effective educational tool, but more research on the best way to implement e-Learning in students' practicum is needed.
International Journal of Computer Science & Network Security
/
v.21
no.8
/
pp.87-96
/
2021
The demand for e-learning through video lectures is rapidly increasing due to its diverse advantages over the traditional learning methods. This led to massive volumes of web-based lecture videos. Indexing and retrieval of a lecture video or a lecture video topic has thus proved to be an exceptionally challenging problem. Many techniques listed by literature were either visual or audio based, but not both. Since the effects of both the visual and audio components are equally important for the content-based indexing and retrieval, the current work is focused on both these components. A framework for automatic topic-based indexing and search depending on the innate content of the lecture videos is presented. The text from the slides is extracted using the proposed Merged Bounding Box (MBB) text detector. The audio component text extraction is done using Google Speech Recognition (GSR) technology. This hybrid approach generates the indexing keywords from the merged transcripts of both the video and audio component extractors. The search within the indexed documents is optimized based on the Naïve Bayes (NB) Classification and K-Means Clustering models. This optimized search retrieves results by searching only the relevant document cluster in the predefined categories and not the whole lecture video corpus. The work is carried out on the dataset generated by assigning categories to the lecture video transcripts gathered from e-learning portals. The performance of search is assessed based on the accuracy and time taken. Further the improved accuracy of the proposed indexing technique is compared with the accepted chain indexing technique.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.