• Title/Summary/Keyword: e-Learning 2.0

Search Result 208, Processing Time 0.025 seconds

Comparison of Multi-Label U-Net and Mask R-CNN for panoramic radiograph segmentation to detect periodontitis

  • Rini, Widyaningrum;Ika, Candradewi;Nur Rahman Ahmad Seno, Aji;Rona, Aulianisa
    • Imaging Science in Dentistry
    • /
    • v.52 no.4
    • /
    • pp.383-391
    • /
    • 2022
  • Purpose: Periodontitis, the most prevalent chronic inflammatory condition affecting teeth-supporting tissues, is diagnosed and classified through clinical and radiographic examinations. The staging of periodontitis using panoramic radiographs provides information for designing computer-assisted diagnostic systems. Performing image segmentation in periodontitis is required for image processing in diagnostic applications. This study evaluated image segmentation for periodontitis staging based on deep learning approaches. Materials and Methods: Multi-Label U-Net and Mask R-CNN models were compared for image segmentation to detect periodontitis using 100 digital panoramic radiographs. Normal conditions and 4 stages of periodontitis were annotated on these panoramic radiographs. A total of 1100 original and augmented images were then randomly divided into a training (75%) dataset to produce segmentation models and a testing (25%) dataset to determine the evaluation metrics of the segmentation models. Results: The performance of the segmentation models against the radiographic diagnosis of periodontitis conducted by a dentist was described by evaluation metrics(i.e., dice coefficient and intersection-over-union [IoU] score). MultiLabel U-Net achieved a dice coefficient of 0.96 and an IoU score of 0.97. Meanwhile, Mask R-CNN attained a dice coefficient of 0.87 and an IoU score of 0.74. U-Net showed the characteristic of semantic segmentation, and Mask R-CNN performed instance segmentation with accuracy, precision, recall, and F1-score values of 95%, 85.6%, 88.2%, and 86.6%, respectively. Conclusion: Multi-Label U-Net produced superior image segmentation to that of Mask R-CNN. The authors recommend integrating it with other techniques to develop hybrid models for automatic periodontitis detection.

Prediction of karst sinkhole collapse using a decision-tree (DT) classifier

  • Boo Hyun Nam;Kyungwon Park;Yong Je Kim
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.441-453
    • /
    • 2024
  • Sinkhole subsidence and collapse is a common geohazard often formed in karst areas such as the state of Florida, United States of America. To predict the sinkhole occurrence, we need to understand the formation mechanism of sinkhole and its karst hydrogeology. For this purpose, investigating the factors affecting sinkholes is an essential and important step. The main objectives of the presenting study are (1) the development of a machine learning (ML)-based model, namely C5.0 decision tree (C5.0 DT), for the prediction of sinkhole susceptibility, which accounts for sinkhole/subsidence inventory and sinkhole contributing factors (e.g., geological/hydrogeological) and (2) the construction of a regional-scale sinkhole susceptibility map. The study area is east central Florida (ECF) where a cover-collapse type is commonly reported. The C5.0 DT algorithm was used to account for twelve (12) identified hydrogeological factors. In this study, a total of 1,113 sinkholes in ECF were identified and the dataset was then randomly divided into 70% and 30% subsets for training and testing, respectively. The performance of the sinkhole susceptibility model was evaluated using a receiver operating characteristic (ROC) curve, particularly the area under the curve (AUC). The C5.0 model showed a high prediction accuracy of 83.52%. It is concluded that a decision tree is a promising tool and classifier for spatial prediction of karst sinkholes and subsidence in the ECF area.

A Study on Classifying Sea Ice of the Summer Arctic Ocean Using Sentinel-1 A/B SAR Data and Deep Learning Models (Sentinel-1 A/B 위성 SAR 자료와 딥러닝 모델을 이용한 여름철 북극해 해빙 분류 연구)

  • Jeon, Hyungyun;Kim, Junwoo;Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.999-1009
    • /
    • 2019
  • The importance of high-resolution sea ice maps of the Arctic Ocean is increasing due to the possibility of pioneering North Pole Routes and the necessity of precise climate prediction models. In this study,sea ice classification algorithms for two deep learning models were examined using Sentinel-1 A/B SAR data to generate high-resolution sea ice classification maps. Based on current ice charts, three classes (Open Water, First Year Ice, Multi Year Ice) of training data sets were generated by Arctic sea ice and remote sensing experts. Ten sea ice classification algorithms were generated by combing two deep learning models (i.e. Simple CNN and Resnet50) and five cases of input bands including incident angles and thermal noise corrected HV bands. For the ten algorithms, analyses were performed by comparing classification results with ground truth points. A confusion matrix and Cohen's kappa coefficient were produced for the case that showed best result. Furthermore, the classification result with the Maximum Likelihood Classifier that has been traditionally employed to classify sea ice. In conclusion, the Convolutional Neural Network case, which has two convolution layers and two max pooling layers, with HV and incident angle input bands shows classification accuracy of 96.66%, and Cohen's kappa coefficient of 0.9499. All deep learning cases shows better classification accuracy than the classification result of the Maximum Likelihood Classifier.

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.

Patient safety practices in Korean hospitals (우리나라 병원의 환자안전 향상을 위한 활동 현황)

  • Hwang, Soo-Hee;Kim, Myung-Hwa;Park, Choon-Seon
    • Quality Improvement in Health Care
    • /
    • v.22 no.2
    • /
    • pp.43-73
    • /
    • 2016
  • Purpose: The aims of this study were to assess the presence of core patient safety practices in Korean hospitals and assess the differences in reporting and learning systems of patient safety, infrastructure, and safe practices by hospital characteristics. Methods: The authors developed a questionnaire including 39 items of patient safety staffing, health information system, reporting system, and event-specific prevention practices. The survey was conducted online or e-mail with 407 tertiary, general and specialty hospitals. Results: About 90% of hospitals answered the self-reporting system of patient safety related events is established. More than 90% of hospitals applied incidence monitoring or root cause analysis on healthcare-associated infection, in-facility pressure ulcers and falls, but only 60% did on surgery/procedure related events. More than 50% of the hospitals did not adopted present on admission (POA) indicators. One hundred (80.0%) hospitals had a department of patient safety and/or quality and only 52.8% of hospitals had a patient safety officer (PSO). While 82.4% of hospitals used electronic medical records (EMRs), only 53% of these hospitals adopted clinical decision support function. Infrastructure for patient safety except EMRs was well established in training, high-level and large hospitals. Most hospitals implemented prevention practices of adverse drug events, in-facility pressure ulcers and falls (94.4-100.0%). But prevention practices of surgery/procedure related events had relatively low adoption rate (59.2-92.8%). Majority of prevention practices for patient safety events were also implemented with a relatively modest increase in resources allocated. Conclusion: The hospital-based reporting and learning system, EMRs, and core evidence-based prevention practices were implemented well in high-level and large hospitals. But POA indicator and PSO were not adopted in more than half of surveyed hospitals and implementation of prevention practices for specific event had low. To support and monitor progress in hospital's patient safety effort, national-level safety practices set is needed.

A study on EPB shield TBM face pressure prediction using machine learning algorithms (머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구)

  • Kwon, Kibeom;Choi, Hangseok;Oh, Ju-Young;Kim, Dongku
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.217-230
    • /
    • 2022
  • The adequate control of TBM face pressure is of vital importance to maintain face stability by preventing face collapse and surface settlement. An EPB shield TBM excavates the ground by applying face pressure with the excavated soil in the pressure chamber. One of the challenges during the EPB shield TBM operation is the control of face pressure due to difficulty in managing the excavated soil. In this study, the face pressure of an EPB shield TBM was predicted using the geological and operational data acquired from a domestic TBM tunnel site. Four machine learning algorithms: KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), and XGB (eXtreme Gradient Boosting) were applied to predict the face pressure. The model comparison results showed that the RF model yielded the lowest RMSE (Root Mean Square Error) value of 7.35 kPa. Therefore, the RF model was selected as the optimal machine learning algorithm. In addition, the feature importance of the RF model was analyzed to evaluate appropriately the influence of each feature on the face pressure. The water pressure indicated the highest influence, and the importance of the geological conditions was higher in general than that of the operation features in the considered site.

An Analysis and Evaluation of Cyber Home Study Contents for Self-directed Learning - Focused on the Earth Science Content of the Science Basic Course for the 7th grade - (사이버가정학습의 자율학습용 콘텐츠 분석 및 평가 - 중학교 1학년 과학 기본과정 지구과학영역을 중심으로 -)

  • Na, Jae-Joon;Son, Cheon-Jae;Kook, Dong-Sik
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.392-402
    • /
    • 2010
  • The purpose of this study is to analyze and evaluate the self-directed learning contents of Earth science area in the basic course of the 7th grade. For this purpose, we applied the 'Cyber Home Study Content Quality Control Tool' presented in 'Elementary Secondary Education e-Learning Quality Management Guidelines (Ver.2.0)' of Korea Education & Research Information Service (2008). The results of contents analysis are as follow: First, it was presented that the study guide introduced the contents which should be studied for one class, properly. And it was not analyzed that the diagnosis assesment was not completed in the initiative study; Second, it was possible to study choosing the contents fitting the learner's level of learning in the main study, it was comprised of about 15 minutes. Third, it was performed without feedback for incorrect answers in the learning assessment, just the number of wrong questions. And the learning arrangement present the important contents learned in that class, summarizing and arranging again. The results of content evaluation are as follows: First, a big difference was not showed against the needs analysis, instructional design, interaction in each class. And the evaluation of the ethics was not included a word or sentence not suitable. The evaluation of copyright, it was analyzed that Work within the content display in compliance with international copyright Second, the evaluation of instructional design presented mainly the description of a simple picture based, the visible resources like flash card were poor. And in the evaluation of Supporting System, it was presented that the contents were installed so that it was freely available for learners. But it was analyzed that there was no memo-function learners were able to jot down something during the studying contents. And in the evaluation for evaluation, the clear valuation basis about the described content was not presented. So there were slightly differences for each class. Third, in the evaluation and analysis for learning content, it was presented that there were some big differences for each class because it was not composed of the latest information, not corrected and complementary.

Feasibility of Linear-Shaped Gastroduodenostomy during the Performance of Totally Robotic Distal Gastrectomy

  • Wang, Bo;Son, Sang-Yong;Shin, Hojung;Roh, Chul Kyu;Hur, Hoon;Han, Sang-Uk
    • Journal of Gastric Cancer
    • /
    • v.19 no.4
    • /
    • pp.438-450
    • /
    • 2019
  • Purpose: Although linear-shaped gastroduodenostomy (LSGD) was reported to be a feasible and reliable method of Billroth I anastomosis in patients undergoing totally laparoscopic distal gastrectomy (TLDG), the feasibility of LSGD for patients undergoing totally robotic distal gastrectomy (TRDG) has not been determined. This study compared the feasibility of LSGD in patients undergoing TRDG and TLDG. Materials and Methods: All c: onsecutive patients who underwent LSGD after distal gastrectomy for gastric cancer between January 2009 and December 2017 were analyzed retrospectively. Propensity score matching (PSM) analysis was performed to reduce the selection bias between TRDG and TLDG. Short-term outcomes, functional outcomes, learning curve, and risk factors for postoperative complications were analyzed. Results: This analysis included 414 patients, of whom 275 underwent laparoscopy and 139 underwent robotic surgery. PSM analysis showed that operation time was significantly longer (163.5 vs. 132.1 minutes, P<0.001) and postoperative hospital stay significantly shorter (6.2 vs. 7.5 days, P<0.003) in patients who underwent TRDG than in patients who underwent TLDG. Operation time was the independent risk factor for LSGD after intracorporeal gastroduodenostomy. Cumulative sum analysis showed no definitive turning point in the TRDG learning curve. Long-term endoscopic findings revealed similar results in the two groups, but bile reflux at 5 years showed significantly better improvement in the TLDG group than in the TRDG group (P=0.016). Conclusions: LSGD is feasible in TRDG, with short-term and long-term outcomes comparable to that in TLDG. LSGD may be a good option for intracorporeal Billroth I anastomosis in patients undergoing TRDG.

Phytochemical Screening and Biological Studies of Boerhavia Diffusa Linn

  • Gautam, Prakriti;Panthi, Sandesh;Bhandari, Prashubha;Shin, Jihoon;Yoo, Jin Cheol
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.72-79
    • /
    • 2016
  • Hexane, ethyl acetate and methanol extracts of whole plant of Boerhavia diffusa were screened for phytochemical and biological activities. Qualitative phytochemical screening via colorimetric method and the quantitative estimation of phenolic and flavonoid content were performed. Antioxidant assay using DPPH scavenging method was studied. Antimicrobial screening of plant extracts was done by cup diffusion technique. Cytotoxic activity of B. diffusa was studied by brine shrimp bioassay and anthelminthic activity was evaluated in vitro in Pheretima posthuma. This study revealed B. diffusa as a source of various phyto-constituents such as alkaloids, glycosides, saponins, tannins, carbohydrates, cardiac glycosides, flavonoids and terpenoids. Quantitative estimation of total phenol was found to be maximum in BEE i.e. $29.73{\pm}0.88$, BME $19.8{\pm}2.02$ and in BHE $9.15{\pm}0.304mgGAE/g$. Similarly, the total flavonoid content was found to be $17.44{\pm}0.75$ in BEE, $14.43{\pm}0.23$ in BHE and 3.678 mg QE/g in BME. Ethyl acetate extract showed its antibacterial activity against all tested pathogens except Escherichia coli whereas Staphylococcus aureus and Salmonella Typhi were resistant to methanol and hexane extract. The zone of inhibition (ZOI) of ethyl acetate extract against S. Typhi and B. cereus was found to be 18 mm and 14 mm respectively. The MIC value of BEE in S. Typhi was $3.125{\mu}g/ml$ and in B. cereus was $12.5{\mu}g/ml$. The preliminary screening of anticancer property of B. diffusa i.e. BSLT in methanol was found to be $165.19{\mu}g/ml$. B. diffusa was also found to contain anthelmintic property. The study helped in further exploration of medicinal properties of B. diffusa by phytochemical screening and biological activities paving the path for study and investigation in this plant.

Application of Machine Learning Algorithm and Remote-sensed Data to Estimate Forest Gross Primary Production at Multi-sites Level (산림 총일차생산량 예측의 공간적 확장을 위한 인공위성 자료와 기계학습 알고리즘의 활용)

  • Lee, Bora;Kim, Eunsook;Lim, Jong-Hwan;Kang, Minseok;Kim, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1117-1132
    • /
    • 2019
  • Forest covers 30% of the Earth's land area and plays an important role in global carbon flux through its ability to store much greater amounts of carbon than other terrestrial ecosystems. The Gross Primary Production (GPP) represents the productivity of forest ecosystems according to climate change and its effect on the phenology, health, and carbon cycle. In this study, we estimated the daily GPP for a forest ecosystem using remote-sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS) and machine learning algorithms Support Vector Machine (SVM). MODIS products were employed to train the SVM model from 75% to 80% data of the total study period and validated using eddy covariance measurement (EC) data at the six flux tower sites. We also compare the GPP derived from EC and MODIS (MYD17). The MODIS products made use of two data sets: one for Processed MODIS that included calculated by combined products (e.g., Vapor Pressure Deficit), another one for Unprocessed MODIS that used MODIS products without any combined calculation. Statistical analyses, including Pearson correlation coefficient (R), mean squared error (MSE), and root mean square error (RMSE) were used to evaluate the outcomes of the model. In general, the SVM model trained by the Unprocessed MODIS (R = 0.77 - 0.94, p < 0.001) derived from the multi-sites outperformed those trained at a single-site (R = 0.75 - 0.95, p < 0.001). These results show better performance trained by the data including various events and suggest the possibility of using remote-sensed data without complex processes to estimate GPP such as non-stationary ecological processes.