Browse > Article
http://dx.doi.org/10.7780/kjrs.2019.35.6.2.8

Application of Machine Learning Algorithm and Remote-sensed Data to Estimate Forest Gross Primary Production at Multi-sites Level  

Lee, Bora (Forest Ecology and Climate Change Division, National Institute of Forest Science)
Kim, Eunsook (Forest Ecology and Climate Change Division, National Institute of Forest Science)
Lim, Jong-Hwan (Forest Ecology and Climate Change Division, National Institute of Forest Science)
Kang, Minseok (National Center for Agro Meteorology)
Kim, Joon (Department of Landscape Architecture and Rural System Engineering, Seoul National University)
Publication Information
Korean Journal of Remote Sensing / v.35, no.6_2, 2019 , pp. 1117-1132 More about this Journal
Abstract
Forest covers 30% of the Earth's land area and plays an important role in global carbon flux through its ability to store much greater amounts of carbon than other terrestrial ecosystems. The Gross Primary Production (GPP) represents the productivity of forest ecosystems according to climate change and its effect on the phenology, health, and carbon cycle. In this study, we estimated the daily GPP for a forest ecosystem using remote-sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS) and machine learning algorithms Support Vector Machine (SVM). MODIS products were employed to train the SVM model from 75% to 80% data of the total study period and validated using eddy covariance measurement (EC) data at the six flux tower sites. We also compare the GPP derived from EC and MODIS (MYD17). The MODIS products made use of two data sets: one for Processed MODIS that included calculated by combined products (e.g., Vapor Pressure Deficit), another one for Unprocessed MODIS that used MODIS products without any combined calculation. Statistical analyses, including Pearson correlation coefficient (R), mean squared error (MSE), and root mean square error (RMSE) were used to evaluate the outcomes of the model. In general, the SVM model trained by the Unprocessed MODIS (R = 0.77 - 0.94, p < 0.001) derived from the multi-sites outperformed those trained at a single-site (R = 0.75 - 0.95, p < 0.001). These results show better performance trained by the data including various events and suggest the possibility of using remote-sensed data without complex processes to estimate GPP such as non-stationary ecological processes.
Keywords
Gross Primary Production; Machine learning; MODIS; Remote-sensed data;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ichii, K., M. Ueyama, M. Kondo, N. Saigusa, J. Kim, M. C. Alberto, J. Ardo, J. E.S. Euskirchen, M. Kang, T. Hirano, and J. Joiner, 2017. New data-driven estimation of terrestrial $CO_2$ fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression, Journal of Geophysical Research: Biogeosciences, 122(4): 767-795.   DOI
2 Jang, K., S. K. Kang, H. W. Kim, and H.J. Kwon, 2009. Evaluation of Shortwave Irradiance and Evapotranspiration Derived from Moderate Resolution Imaging Spectroradiometer (MODIS), Asia-Pacific Journal of Atmospheric Sciences, 45(2): 233-246.
3 Jajarmizadeh, M., E. K. Lafdani, S. Harun, and A. Ahmadi, 2015. Application of SVM and SWAT Models for Monthly Streamflow Prediction, a Case Study in South of Iran, Korean Society of Civil Engineers, 19(1): 345-357.
4 Kang, M., J. Kim, H.-S. Kim, B. M. Thakuri, and J. H. Chun, 2014. On the Nighttime Correction of CO2 Flux Measured by Eddy Covariance over Temperate Forests in Complex Terrain, Korea Journal of Agricultural and Forest Meteorology, 16(3): 233-245.   DOI
5 Kang, M., J. Kim, S.-H. Lee, J. Kim, J.-H. Chun, and S. Cho, 2018b. Changes and Improvements of the Standardized Eddy Covariance Data Processing in KoFlux, Korean Journal of Agricultural and Forest Meteorology, 20(1): 5-17 (in Korean with English abstract).   DOI
6 Kang, M., J. Kim, B. M. Thakuri, J. Chun, and C. Cho, 2019. Modification of the moving point test method for nighttime eddy $CO_2$ flux filtering on hilly and complex terrains, MethodsX, 6: 1207-1217.   DOI
7 Kimball, H. L., P. C. Selmants, A. Moreno, S. W. Running, and C. P. Giardina, 2017. Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems, PloS one, 12(9): e0184466.   DOI
8 Kwon, H., J.-H. Lee, Y.-K. Lee, J. W. Lee, S. W. Jung, and J. Kim, 2009. Seasonal Variations of Evapotranspiration Observed in a Mixed forest in the Seolmacheon Catchment, Korea Journal of Agricultural and Forest Meteorology, 11(1): 39-47.   DOI
9 Langhammer, J. and J. Cesak, 2016. Applicability of a Nu-Support Vector Regression Model for the Completion of Missing Data in Hydrological Time Series, Water, 8(12): 560.   DOI
10 Larcher, W., 2003. Physiological plant ecology: ecophysiology and stress physiology of functional groups, Springer Science & Business Media, Berlin, Germany, pp. 32-35.
11 Lavigne, M. B., M.G. Ryan, D.E. Anderson, D. D. Baldocchi, P. M. Crill, D. R. Fitzjarrald, M. L. Goulden, S. T. Gower, J. M. Massheder, J. H. McCaughey, M. Rayment, and R. G. Striegl, 1997. Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements, Journal of Geophysical Research, 102(D24): 28977-28986.   DOI
12 Lee, B., H. Kwon, A. Miyata, S. Lindner, and J. Tenhunen, 2017. Evaluation of a phenology-dependent response method for estimating leaf area index of rice across climate gradients, Remote Sensing, 9(1): 20.   DOI
13 Liu, P., L. Di, Q. Du, and L. Wang, 2018. Remote Sensing Big Data: Theory, Methods and Applications, Remote Sensing, 10(5): 711.   DOI
14 Lee, J. H., S. Kang, K. C. Jang, J.H. Ko, and S. Y. Hong, 2011. The evaluation of meteorological inputs retrieved from MODIS for estimation of gross primary productivity in the US corn-belt region, Korean Journal of Remote Sensing, 27(4): 481-494 (in Korean with English abstract).   DOI
15 Massmann, A., P. Gentine, and C. Lin, 2018. When does vapor pressure deficit drive or reduce evapotranspiration?, arXiv preprint arXiv:1805.05444.
16 Papale, D., M. Reichstein, M. Aubinet, E. Canfora, C. Bernhofer, W. Kutsch, B. Longdoz, S. Rambal, R. Valentini, T. Vesala, and D. Yakir, 2006. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3: 571-583.   DOI
17 Melaas, E. K., M. A. Friedl, and Z. Zhu, 2013. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data, Remote Sensing of Environment, 132(C): 176-185.   DOI
18 Novick, K. A., C. A. Williams, R. Phillips, A. C. Oishi, B. N. Sulman, G. Bohrer, and D. L. Ficklin, 2015. Vapor pressure deficit is as important as soil moisture in determining limitations to evapotranspiration during drought, Proc. of American Geophysical Union Fall meeting, San Francisco, CA, Dec. 14-18.
19 Ogutu, B. O., J. Dash, and T. P. Dawson, 2013. Developing a diagnostic model for estimating terrestrial vegetation gross primary productivity using the photosynthetic quantum yield and Earth Observation data, Global Change Biology, 19(9): 2878-2892.   DOI
20 Reeves, M. C., M. Zhao, and S. W. Running, 2007. Usefulness and limits of MODIS GPP for estimating wheat yield, International Journal of Remote Sensing, 26(7): 1403-1421.   DOI
21 Reichstein, M., E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grunwald, K. Havrankova, H. Ilvesniemi, D. Janous, A. Knohl, T. Laurila, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J.-M. Ourcival, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, D. Yakir, and R. Valentini, 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Global Change Biology, 11(9): 1424-1439.   DOI
22 Running, S. W., D. D. Baldocchi, D. P. Turner, S. T. Gower, P. S. Bakwin, and K. A. Hibbard. 1999. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data, Remote Sensing of Environment, 70(1): 108-127.   DOI
23 Robinson, N. P., B. W. Allred, W. K. Smith, M. O. Jones, A. Moreno, T. A. Erickson, D. E. Naugle, and S. W. Running, 2018. Terrestrial primary production for the conterminous United States derived from Landsat 30 m and MODIS 250 m, Remote Sensing in Ecology and Conservation, 4(3): 264-280.   DOI
24 Ryu, Y., S. Kang, S. K. Moon, and J. Kim, 2008. Evaluation of land surface radiation balance derived from moderate resolution imaging spectroradiometer (MODIS) over complex terrain and heterogeneous landscape on clear sky days, Agricultural and Forest Meteorology, 148(10): 1538-1552.   DOI
25 Ruidisch, M., T. T. Nguyen, Y. L. Li, R. Geyer, and J. Tenhunen. 2014. Estimation of annual spatial variations in forest production and crop yields at landscape scale in temperate climate regions, Ecological Research, 30(2): 279-292.   DOI
26 Schindler, D. E. and R. Hilborn, 2015. Prediction, precaution, and policy under global change, Science, 347(6225): 953-954.   DOI
27 Sims, D. A., A. F. Rahman, V. D. Cordova, B. Z. El-Masri, D. D. Baldocchi, L. B. Flanagan, A. H. Goldstein, D. Y. Hollinger, L. Misson, R. K. Monson, and W. C. Oechel, 2006. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems, Journal of Geophysical Research: Biogeosciences, 111(G4).
28 Smola, A. J. and B. Scholkopf, 2004. A tutorial on support vector regression, Statistics and Computing, 14(3): 199-222.   DOI
29 Aubinet, M., 2008. Eddy covariance $CO_2$ flux measurements in nocturnal conditions: an analysis of the problem, Ecological Applications, 18(6): 1368-1378.   DOI
30 Aubinet, M., A. Grelle, A. Ibrom, U. Rannik, J. Moncrieff, T. Foken, A.S. Kowalski, P.H. Martin, P. Berbigier, C. Bernhofer, R. Clement, J. Elbers, A. Granier, T. Grunwald, K. Morgenstern, K. Pilegaard, C. Rebmann, W. Snijders, R. Valentini, and T. Vesala, 2000. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX Methodology, Advanced in Ecological Research, 30: 113-175.
31 Baldocchi, D. D., 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Global Change Biology, 9(4): 479-492.   DOI
32 Balzarolo, M., L. Vescovo, A. Hammerle, D. Gianelle, D. Papale, E. Tomelleri, and G. Wohlfahrt, 2015. On the relationship between ecosystem-scale hyperspectral reflectance and $CO_2$ exchange in European mountain grasslands, Biogeosciences, 12(10): 3089-3108.   DOI
33 Beer, C., M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N. Carvalhais, C. Rodenbeck, M. A. Arain, D. Baldocchi, G. B. Bonan, A. Bondeau, A. Cescatti, G. Lasslop, A. Lindroth, M. Lomas, S. Luyssaert, H. Margolis, K. W. Oleson, O. Roupsard, E. Veenendaal, N. Viovy, C. Williams, F. I. Woodward, and D. Papale, 2010. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate, Science, 329(5993): 834-838.   DOI
34 Bird, R. E. and R. L. Hulstrom, 1981. Simplified clear sky model for direct and diffuse insolation on horizontal surfaces (No. SERI/TR-642-761), Solar Energy Research Inst., Golden, CO, USA.
35 Webb, E. K., G. I. Pearman, and R. Leuning, 1980. Correction of flux measurements for density effects due to heat and water vapour transfer, Quarterly Journal of the Royal Meteorological Society, 106(447): 85-100.   DOI
36 Speckman, H. N., J. M. Frank, J. B. Bradford, B. L. Miles, W. J. Massman, W. J. Parton, and M. G. Ryan, 2014. Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles, Global Change Biology, 21(2): 708-721.   DOI
37 Wang, X., Y. Yao, S. Zhao, K. Jia, X. Zhang, Y. Zhang, L. Zhang, J. Xu, and X. Chen, 2017. MODIS-Based Estimation of Terrestrial Latent Heat Flux over North America Using Three Machine Learning Algorithms, Remote Sensing, 9(12): 1326.   DOI
38 Wardlow, B. D. and S. L. Egbert, 2010. A comparison of MODIS 250-m EVI and NDVI data for crop mapping: a case study for southwest Kansas, International Journal of Remote Sensing, 31(3): 805-830.   DOI
39 Wilczak, J., S. Oncley, and S. Stage, 2001. Sonic Anemometer Tilt Correction Algorithms, Boundary-Layer Meteorology, 99(1): 127-150.   DOI
40 Wu, C., Z. Niu, and S. Gao, 2010. Gross primary production estimation from MODIS data with vegetation index and photosynthetically active radiation in maize, Journal of Geophysical Research, 115(D12): D12127.   DOI
41 Ye, H., R. J. Beamish, S. M. Glaser, S. C. H. Grant, C.-H. Hsieh, L. J. Richards, J. T. Schnute, and G. Sugihara, 2015. Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling, Proceedings of the National Academy of Sciences of the United States of America, 112(13): E1569-E1576.   DOI
42 Cramer, W., D. W. Kicklighter, A. Bondeau, G. Churkina, B. Nemry, A. Ruimy, A. L. Schloss, and The Participants of the Potsdam NPP Model Intercomparison, 1999. Comparing global models of terrestrial net primary productivity (NPP): overview and key results, Global Change Biology, 5(S1): 1-15.   DOI
43 Cawley, G. C. and N. L. C. Talbot, 2010. On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation, Journal of Machine Learning Research, 11: 2079-2107.
44 Coops, N. C., R. H. Waring, and J. J. Landsberg, 1998. Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity, Forest Ecology and Management, 104(1-3): 113-127.   DOI
45 Cortes, C. and V. Vapnik, 1995. Support-Vector Networks, Machine Learning, 20(3): 273-297.   DOI
46 Dimitriadou, E., K. Hornik, F. Leisch, D. Meyer, and A. Weingessel, 2008. Misc functions of the Department of Statistics (e1071), TU Wien, R package, 1: 5-24.
47 Dou, X., Y. Yang, and J. Luo, 2018. Estimating forest carbon fluxes using machine learning techniques based on eddy covariance measurements, Sustainability, 10(1): 203.   DOI
48 Yun, S. J. and J. Chun, 2018. Long-term ecological research on Korean forest ecosystems: the current status and challenges, Ecological Research, 33(6): 1289-1302.   DOI
49 Yuan, R., M.-S. Kang, S.-B. Park, J.-K. Hong, D.-H. Lee, and J. Kim, 2007. The effect of coordinate rotation on the eddy covariance flux estimation in a hilly KoFlux forest catchment, Korean Journal of Agricultural and Forest Meteorology, 9(2): 100-108.   DOI
50 Yuan, H., G. Yang, C. Li, Y. Wang, J. Liu, H. Yu, H. Feng, B. Xu, X. Zhao, and X. Yang, 2017. Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models, Remote Sensing, 9(4): 309.   DOI
51 Zhang, L., B. Wylie, T. Loveland, E. Fosnight, L. L. Tieszen, L. Ji, and T. Gilmanov, 2007. Evaluation and comparison of gross primary production estimates for the Northern Great Plains grasslands, Remote Sensing of Environment, 106(2): 173-189.   DOI
52 Zhao, M., F. A. Heinsch, R. R. Nemani, and S. W. Running, 2005. Improvements of the MODIS terrestrial gross and net primary production global data set, Remote Sensing of Environment, 95(2): 164-176.   DOI
53 Granata, F., R. Gargano, and G. de Marinis, 2016. Support Vector Regression for Rainfall-Runoff Modeling in Urban Drainage: A Comparison with the EPA's Storm Water Management Model, Water, 8(3): 69.   DOI
54 Dingman, L., 2008. Physical hydrology, Second Edition ed., Waveland Press Inc, Long Grove, IL, USA.
55 Fu, G. and J.-S. Wu, 2017. Validation of MODIS collection 6 FPAR/LAI in the alpine grassland of the Northern Tibetan Plateau, Remote Sensing Letters, 8(9): 831-838.   DOI
56 Granger, R. J. and D. M. Gray, 1989. Evaporation from natural nonsaturated surface, Journal of Hydrology, 111(1-4): 21-29.   DOI
57 Hargreaves, G. H. and Z. A. Samani, 1982. Estimating potential evapotranspiration, Journal of the Irrigation and Drainage Division, 108(3): 225-230.   DOI
58 Houborg, R. M. and H. Soegaard, 2004. Regional simulation of ecosystem $CO_2$ and water vapor exchange for agricultural land using NOAA AVHRR and Terra MODIS satellite data. Application to Zealand, Denmark, Remote Sensing of Environment, 93(1-2): 150-167.   DOI
59 Hong, J., H. Kwon, J.-H. Lim, Y.-H. Byun, J. Lee, and J. Kim, 2009. Standardization of KoFlux eddy-covariance data processing, Korean Journal of Agricultural and Forest Meteorology, 11(1): 19-26 (in Korean with English abstract).   DOI