• Title/Summary/Keyword: e-러닝 플랫폼

Search Result 49, Processing Time 0.03 seconds

IBN-based: AI-driven Multi-Domain e2e Network Orchestration Approach (IBN 기반: AI 기반 멀티 도메인 네트워크 슬라이싱 접근법)

  • Khan, Talha Ahmed;Muhammad, Afaq;Abbas, Khizar;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.29-41
    • /
    • 2020
  • Networks are growing faster than ever before causing a multi-domain complexity. The diversity, variety and dynamic nature of network traffic and services require enhanced orchestration and management approaches. While many standard orchestrators and network operators are resulting in an increase of complexity for handling E2E slice orchestration. Besides, there are multiple domains involved in E2E slice orchestration including access, edge, transport and core network each having their specific challenges. Hence, handling of multi-domain, multi-platform and multi-operator based networking environments manually requires specified experts and using this approach it is impossible to handle the dynamic changes in the network at runtime. Also, the manual approaches towards handling such complexity is always error-prone and tedious. Hence, this work proposes an automated and abstracted solution for handling E2E slice orchestration using an intent-based approach. It abstracts the domains from the operators and enable them to provide their orchestration intention in the form of high-level intents. Besides, it actively monitors the orchestrated resources and based on current monitoring stats using the machine learning it predicts future utilization of resources for updating the system states. Resulting in a closed-loop automated E2E network orchestration and management system.

Development of LMS Evaluation Index for Non-Face-to-Face Information Security Education (비대면 정보보호 교육을 위한 LMS 평가지표 개발)

  • Lee, Ji-Eun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.1055-1062
    • /
    • 2021
  • As face-to-face education becomes difficult due to the spread of COVID-19, the use of e-learning content and virtual training is increasing. In the case of information security education, practice to learn response techniques is important, so simulation hacking and vulnerability analysis activities have been supported as virtual training for a long time. In order to increase the educational effect, contents should be designed similar to real situation, and learning activities to achieve the learning goals should be designed. In addition, excellent functions and scalability of the system supporting learning activities are required. The researcher developed an LMS evaluation index that supports non-face-to-face education by considering the key elements of non-face-to-face education and training. The developed evaluation index was applied to the information security education platform to verify its practical utility.

A Research to realize a smart logistics warehouse system using 5G-based Logistics Automation Robot (5G 기반 물류 자동화 로봇을 활용한 스마트 물류 창고 시스템 구현을 위한 연구)

  • Park, Tae-uk;Yoon, Mahn-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.532-534
    • /
    • 2022
  • At a time when the 5G era is advancing beyond commercialization, places that used to handle simple logistics warehouse tasks are transforming into smart logistics warehouses by combining IT convergence technology and platforms. Smart logistics warehouses can accurately predict demand and inventory of products with AI, deep learning, and robot technologies based on 5G, and provide information on warehousing and warehousing status in real time. As the e-commerce market grows, the smart logistics sector is also growing rapidly. This paper implements a smart logistics warehouse system and studies and proposes a method of establishing a fast and accurate logistics system by utilizing 5G-based Logistics Automation Robot.

  • PDF

Production Techniques for Mobile Motion Pictures base on Smart Phone (스마트폰 시장 확대에 따른 모바일 동영상 편집 기법 연구)

  • Choi, Eun-Young;Choi, Hun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Because of development of information technology, moving picture can run various platforms. We should consider and apply users' attitude as well as production technique because convergence between mobile and media technology may be increased full-browsing service using mobile device. Previous research related to production technique in various platforms only focus on video quality and adjustment of screen size. However, besides of technical side, production techniques should be changed such as image production as well as image editing by point of view aesthetic. Mise-en-scene such as camera angle, composition, and lighting is changed due to HD image. Also image production should be changed to a suitable full-browsing service using mobile device. Therefore, we would explore a new suitable production techniques and image editing for smart phone. To propose production techniques for smart phone, we used E-learning production system, which are transition, editing technique for suitable converting system. Such as new attempts are leading to new paradigm and establishing their position by applying characteries such as openness, timeliness to mobile. Also it can be extended individual area and established as expression and play tool.

A Design of Human Cloud Platform Framework for Human Resources Distribution of e-Learning Instructional Designer (이러닝 교수 설계자 인적 자원 유통을 위한 휴먼 클라우드 플랫폼 프레임워크 설계)

  • Kim, Yong
    • Journal of Distribution Science
    • /
    • v.16 no.7
    • /
    • pp.67-75
    • /
    • 2018
  • Purpose - In the 21st century, as information technology advances alongside the emergence of the 4th generation, industrial age, industrial environment has become individualized and customized. It is important to hire good quality employees for good service in the industry. The e-learning market is growing every year. Although e-learning companies are finding better quality employees in e-learning, it is not easy to find it. Companies also spend a lot of time and cost to find employee. On the employees side, they want to get a job freely when they want, but they cannot find their job easily. Furthermore, the labor market environment is changing fast. In the 4th generation, industrial age, employers require to find manpower whenever they need and want at little cost. So of their own accord, we have considered the necessity of management of human resources for employees and employers in e-learning. The purpose of this study is to propose a human cloud platform framework for enabling an efficient management of human resources in e-learning industry. Research design, data, and methodology - To pinpoint the items of a human cloud platform framework, the study was initiated according to the following process. First, items of competency relating to e-learning instructional designer was analyzed. Second, based on the items of information from this analysis, selection and validity verification took place with 5 e-learning specialists group. Third, the opinion of experts who were in charge of hiring in e-learning companies were collated with the questionnaire. Lastly, the human cloud platform framework was proposed based on opinion results. Results - The framework was comprised of 7 domains and 27 items in order to develop the human cloud platform for e-learning instructional designer. The analysis results showed that the most highly considered item were 'skill (4.60)' that employee already have the capability. Following this (in order) were 'project type (4.56)', 'work competency (4.56)', and 'strength area of instructional design (4.52)'. Conclusions - The 27 items in the human cloud platform framework were suggested in this study. Following this, we can consider to develop the human cloud platform for finding a job and hiring e-learning instructional designer easily. For successful platform operation, we need to consider reliability between employer and employee. In addition, we need quality assurance system based on operation has public confidence.

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.

A Study of Deep Learning-based Personalized Recommendation Service for Solving Online Hotel Review and Rating Mismatch Problem (온라인 호텔 리뷰와 평점 불일치 문제 해결을 위한 딥러닝 기반 개인화 추천 서비스 연구)

  • Qinglong Li;Shibo Cui;Byunggyu Shin;Jaekyeong Kim
    • Information Systems Review
    • /
    • v.23 no.3
    • /
    • pp.51-75
    • /
    • 2021
  • Global e-commerce websites offer personalized recommendation services to gain sustainable competitiveness. Existing studies have offered personalized recommendation services using quantitative preferences such as ratings. However, offering personalized recommendation services using only quantitative data has raised the problem of decreasing recommendation performance. For example, a user gave a five-star rating but wrote a review that the user was unsatisfied with hotel service and cleanliness. In such cases, has problems where quantitative and qualitative preferences are inconsistent. Recently, a growing number of studies have considered review data simultaneously to improve the limitations of existing personalized recommendation service studies. Therefore, in this study, we identify review and rating mismatches and build a new user profile to offer personalized recommendation services. To this end, we use deep learning algorithms such as CNN, LSTM, CNN + LSTM, which have been widely used in sentiment analysis studies. And extract sentiment features from reviews and compare with quantitative preferences. To evaluate the performance of the proposed methodology in this study, we collect user preference information using real-world hotel data from the world's largest travel platform TripAdvisor. Experiments show that the proposed methodology in this study outperforms the existing other methodologies, using only existing quantitative preferences.

A Study on Implementation of NAS-based K-12 Learning Management System for Supporting Developing Countries (개발도상국 지원을 위한 NAS기반의 K-12 학습관리 시스템 구현 방안에 대한 연구)

  • No, In-Ho;Yoo, Gab-Sang;Kim, Hyeock-Jin
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.179-187
    • /
    • 2019
  • Developing countries, including Africa, are experiencing very little human resources development due to the deprivation of equal educational opportunities, poor educational conditions, and the gap in information technology with developed countries. Developing countries that do not have excellent human resources are lagging behind in globalization competition with developed countries, and the problem of 'human resource development' in developing countries can not be avoided. In developing countries, education budgets are too low to meet education needs and compulsory education, and therefore they are not adequately responding to the increasing demand for education. The lack of education budget is due to the lack of education infrastructure. In this study, the NAS based server is configured to configure functions such as educational content and learning management, and the client area is presented with solutions for various media such as tablet, PC, and beam projector. And to support optimized e-learning services in developing countries by constructing a SCORM-based platform.

An Exploratory study on derivation and Improvement of Kano Quality Attributes in Untact Classes (비대면 수업의 Kano 품질속성 도출과 개선에 관한 탐색적 연구)

  • Daeho Byun;Jaehoon Yang
    • Journal of Service Research and Studies
    • /
    • v.12 no.2
    • /
    • pp.65-79
    • /
    • 2022
  • Non-face-to-face classes continue due to Covid-19. There have been e-learning classes since the past, but the difference is that the current non-face-to-face classes are blended classes that combine real-time and recording classes or combine face-to-face and non-face classes. It is also characterized by being able to self-filmed or choose various lecture platforms in a place other than a dedicated studio. The advantages of non-face-to-face classes can be learned beyond time and space, and repetitive viewing and learning speed can be adjusted. Greening classes have no time and place constraints, and real-time classes have the advantage of high communication effects with learners. Evaluating whether non-face-to-face classes provide sufficient quality compared to face-to-face classes or e-learning will be necessary if branded classes are considered for post Covid. In this paper, for the evaluation of the service quality of non-face-to-face classes, the essential attributes desired by the instructors were derived from the viewpoint of Kano quality attributes and a quality improvement plan was proposed. After expressing the degree of functions that non-face-to-face classes should have on the X-axis and the satisfaction of learners on the Y-axis, 23 quality attributes were classified into 6 quality dimensions. In addition, satisfaction coefficient, dissatisfaction coefficient, and customer satisfaction improvement index were derived. As a result, 50% of learners were satisfied with non-face-to-face classes, but the preference was slightly higher than satisfaction, suggesting the sustainability of non-face-to-face classes. In terms of the customer satisfaction improvement index, the ranking of attributes with the largest increase in satisfaction when improving class quality was as follows. Professors' quick answers to learners' questions, content that can fully explain the subject, what the professor explains easily, develop high-quality content that can be learned on mobile phones, fairness of attendance checks, and real-time classes should start on time.