• Title/Summary/Keyword: dynamics

Search Result 14,431, Processing Time 0.043 seconds

Prediction of Spring Flowering Timing in Forested Area in 2023 (산림지역에서의 2023년 봄철 꽃나무 개화시기 예측)

  • Jihee Seo;Sukyung Kim;Hyun Seok Kim;Junghwa Chun;Myoungsoo Won;Keunchang Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.427-435
    • /
    • 2023
  • Changes in flowering time due to weather fluctuations impact plant growth and ecosystem dynamics. Accurate prediction of flowering timing is crucial for effective forest ecosystem management. This study uses a process-based model to predict flowering timing in 2023 for five major tree species in Korean forests. Models are developed based on nine years (2009-2017) of flowering data for Abeliophyllum distichum, Robinia pseudoacacia, Rhododendron schlippenbachii, Rhododendron yedoense f. poukhanense, and Sorbus commixta, distributed across 28 regions in the country, including mountains. Weather data from the Automatic Mountain Meteorology Observation System (AMOS) and the Korea Meteorological Administration (KMA) are utilized as inputs for the models. The Single Triangle Degree Days (STDD) and Growing Degree Days (GDD) models, known for their superior performance, are employed to predict flowering dates. Daily temperature readings at a 1 km spatial resolution are obtained by merging AMOS and KMA data. To improve prediction accuracy nationwide, random forest machine learning is used to generate region-specific correction coefficients. Applying these coefficients results in minimal prediction errors, particularly for Abeliophyllum distichum, Robinia pseudoacacia, and Rhododendron schlippenbachii, with root mean square errors (RMSEs) of 1.2, 0.6, and 1.2 days, respectively. Model performance is evaluated using ten random sampling tests per species, selecting the model with the highest R2. The models with applied correction coefficients achieve R2 values ranging from 0.07 to 0.7, except for Sorbus commixta, and exhibit a final explanatory power of 0.75-0.9. This study provides valuable insights into seasonal changes in plant phenology, aiding in identifying honey harvesting seasons affected by abnormal weather conditions, such as those of Robinia pseudoacacia. Detailed information on flowering timing for various plant species and regions enhances understanding of the climate-plant phenology relationship.

Cold Cloud Genesis and Microphysical Dynamics in the Yellow Sea using WRF-Chem Model: A Case Study of the July 15, 2017 Event (WRF-Chem 모델을 활용하여 장마 기간 황해에서 발달하는 한랭운과 에어로졸 미세물리 과정 분석: 2017년 7월 15일 사례)

  • Beom-Jung Lee;Jae-Hee Cho;Hak-Sung Kim
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.578-593
    • /
    • 2023
  • Intense convective activity and heavy precipitation inundated Seoul and its metropolitan area on July 15, 2017. This study investigated the synoptic-scale meteorological drivers of cold cloud genesis of this event. The WRF-Chem (Weather Research and Forecasting model coupled with Chemistry) model was employed to explore the intricate interplay between meteorological factors and the indirect effects of PM2.5 aerosols originating from eastern China. The PM2.5 aerosols' indirect effect was quantified by contrasting outcomes between the comprehensive Aerosol Radiation Interaction experiment (encompassing aerosol radiation feedback, cloud chemistry processes, and wet scavenging in the WRF-Chem model) and ACR (Aerosol Cloud Radiation interaction) experiment. The ACR experiment specifically excluded aerosol radiation feedback while incorporating only cloud chemistry processes and wet scavenging. Results indicated that in the early hours of July 15, 2017, a convergence of warm, moisture-laden airflow originating from southeast China and the East China Sea unfolded over the Yellow Sea. This convergence was driven by the juxtaposition of a low-pressure system over the Chinese mainland and Northwest Pacific high. Notably, at approximately 12 km altitude, the resultant convective clouds were characterized by the presence of ice crystals, a hallmark of continental-origin cold clouds. The WRF-Chem model simulations elucidated the role of PM2.5 aerosols from eastern China, attributing 5.7, 10.4, and 10.8% to cloud water, ice crystal column, and liquid water column formation, respectively, within the developing cold clouds. Thus, this study presented a meteorological mechanism elucidating the formation of deep convective clouds over the Yellow Sea and the indirect effects of PM2.5 aerosols originating from eastern China.

Expression of Organogenesis-related Genes and Analysis of Genetic Stability by ISSR Markers of Regenerants Derived from the Process of in vitro Organogenesis in Japanese Blood Grass (Imperata cylindrica 'Rubra') (기내배양 홍띠 단계별 재분화체의 기관분화 관련 유전자 발현과 ISSR에 기반한 유전적 안정성 분석)

  • Ye-Jin Lee;In-Jin Kang;Chang-Hyu Bae
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.496-507
    • /
    • 2023
  • The in vitro organogenesis is one of important issues in plant embryology, and somaclonal variations are existing in calli and/or regenerants induced from a process of the organogenesis with in vitro circumstances. In this study, expressions of organogenesis-related genes were evaluated and genetic stability of regenerants derived from the process of in vitro organogenesis were measured using ISSR markers in Imperata cylindrica 'Rubra', Poaceae. The expressions of organogenesis-related genes were detected all of regenerants at the process of the organogenesis. All ISSR markers produced with an average of 71 bands per in vitro-cultured regenerants, and the scorable bands were varied from two to eight with an average of 5.14 bands per a primer. The polymorphism rates of the in vitro regenerants were higher than that of mother plants (1.4%), showing 4.1% (pot-cultured regenerants), 4.3% (field-cultured regenerants), 4.2% (in vitro-cultured regenerants), 5.6% (calli with green shoots) and 1.4% (calli), respectively. The genetic similarity matrix (GSM) among all accessions ranged from 0.747 to 1.0 with a mean of 0.868. GSM of the regenerants showed differences (from 0.972 to 1.00) compared with that of mother plants (0.991). According to the clustering analysis, two independent groups were divided into; the one is mother plants and regenerants cultured at room and open field, the other is regenerants cultured in vitro. The results give a new insight for understanding the dynamics of organogenesis in monocot plant.

Estimation of Fractional Urban Tree Canopy Cover through Machine Learning Using Optical Satellite Images (기계학습을 이용한 광학 위성 영상 기반의 도시 내 수목 피복률 추정)

  • Sejeong Bae ;Bokyung Son ;Taejun Sung ;Yeonsu Lee ;Jungho Im ;Yoojin Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1009-1029
    • /
    • 2023
  • Urban trees play a vital role in urban ecosystems,significantly reducing impervious surfaces and impacting carbon cycling within the city. Although previous research has demonstrated the efficacy of employing artificial intelligence in conjunction with airborne light detection and ranging (LiDAR) data to generate urban tree information, the availability and cost constraints associated with LiDAR data pose limitations. Consequently, this study employed freely accessible, high-resolution multispectral satellite imagery (i.e., Sentinel-2 data) to estimate fractional tree canopy cover (FTC) within the urban confines of Suwon, South Korea, employing machine learning techniques. This study leveraged a median composite image derived from a time series of Sentinel-2 images. In order to account for the diverse land cover found in urban areas, the model incorporated three types of input variables: average (mean) and standard deviation (std) values within a 30-meter grid from 10 m resolution of optical indices from Sentinel-2, and fractional coverage for distinct land cover classes within 30 m grids from the existing level 3 land cover map. Four schemes with different combinations of input variables were compared. Notably, when all three factors (i.e., mean, std, and fractional cover) were used to consider the variation of landcover in urban areas(Scheme 4, S4), the machine learning model exhibited improved performance compared to using only the mean of optical indices (Scheme 1). Of the various models proposed, the random forest (RF) model with S4 demonstrated the most remarkable performance, achieving R2 of 0.8196, and mean absolute error (MAE) of 0.0749, and a root mean squared error (RMSE) of 0.1022. The std variable exhibited the highest impact on model outputs within the heterogeneous land covers based on the variable importance analysis. This trained RF model with S4 was then applied to the entire Suwon region, consistently delivering robust results with an R2 of 0.8702, MAE of 0.0873, and RMSE of 0.1335. The FTC estimation method developed in this study is expected to offer advantages for application in various regions, providing fundamental data for a better understanding of carbon dynamics in urban ecosystems in the future.

Dokdo of Korea, A Chance for Peace and Co-Prosperity A Study Using Perspectives of Public Diplomacy and Negotiation Strategies (Memorial Lesson from fisherman, An Yong-bok as a Supreme Negotiator) (한국의 독도, 평화와 상생의 기회: 공공외교 및 협상 관점의 연구 (탁월한 소시민 협상가, 어부 안용복을 기리며))

  • Mi-ae Hwang
    • Journal of Public Diplomacy
    • /
    • v.2 no.2
    • /
    • pp.27-52
    • /
    • 2022
  • Objectives: The neighboring countries of South Korea and Japan in Northeast Asia have interacted in both positive and negative ways, at times as close partners and other times adversaries, throughout their long and thorny history of extensive dynamics. The controversial dispute over Dokdo is one of the most critical issues evoking harsh tensions and arguments asserting wholly opposite claims. Dokdo is a small island between two coastal states, but significant in terms of territorial, botanical, and marine resources, and thus ownership of the island has become a point of conflict accompanied by a troubled history. But why has Dokdo been a source of conflicts and how should the controversial Dokdo issue be addressed in a way that fosters positive influence and co-prosperity? Methods: This study provides comprehensive and critical insights from a wealth of previous research and strategic suggestions for the Korean government. It utilizes the three perspectives of historical documents and political context, international regulations and legal frames, and public diplomacy. Furthermore, it applies these resources to negotiation theories and strategies to propose reasonable solutions. Results: This study suggests that it is important for Korea and Japan to try to build mutual trust through more active communication and interaction in order to understand each other before attempting to create a formal resolution via negotiation. In addition to these efforts, Korea needs to be ready for the inevitable need to take decisive action in terms of negotiation, using analytic and efficient strategies. The study proposes three solutions: 1) Strong Action Strategy, 2) International Legal Strategy, and 3) Public Diplomacy Strategy. Conclusions: From the perspective of public diplomacy, the Dokdo issue needs to be converted from a symbol of conflicts between Korea and Japan into a symbol of peace and co-prosperity. In addition to promoting a positive relationship between the two states, it can also contribute to the security environment of the Northeast Asian region and global peace.

Five-year monitoring of microbial ecosystem dynamics in the coastal waters of the Yeongheungdo island, Incheon, Korea (대한민국 인천 영흥도 인근 해역 미소생태계의 5년간의 군집구조 변화 모니터링)

  • Sae-Hee Kim;Jin Ho Kim;Yoon-Ho Kang;Bum Soo Park;Myung-Soo Han;Jae-Hyoung Joo
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • In this study, changes in the microbial ecosystem of the Yeongheungdo island coastal waters were investigated for five years to collect basic data. To evaluate the influence of distance from the coast on the microbial ecosystem, four sites, coastal Site (S1) and 0.75, 1.5, and 3 km away from the coast, were set up and the changes in physicochemical and biological factors were monitored. The results showed seasonal changes in water temperature, dissolved oxygen, salinity, and pH but with no significant differences between sites. For nutrients, the concentration of dissolved inorganic nitrogen increased from 6.4 μM in April-June to 16.4 μM in July-November, while that of phosphorus and silicon phosphate increased from 0.4 μM and 2.5 μM in April-June to 1.1 μM and 12.0 μM in July-November, respectively. Notably, phosphorus phosphate concentrations were lower in 2014-2015 (up to 0.2 μM) compared to 2016-2018 (up to 2.2 μM), indicating phosphorus limitation during this period. However, there were no differences in nutrients with distance from the coast, indicating that there was no effect of distance on nutrients. Phytoplankton (average 511 cells mL-1) showed relatively high biomass (up to 3,370 cells mL-1) in 2014-2015 when phosphorus phosphate was limited. Notably, at that time, the concentration of dissolved organic carbon was not high, with concentrations ranging from 1.1-2.3 mg L-1. However, no significant differences in biological factors were observed between the sites. Although this study revealed that there was no disturbance of the ecosystem, further research and more basic data on the microecosystem are necessary to understand the ecosystem of the Incheon.

The Dynamics of Organizational Change: Moderated Mediating Effects of NBA Teams' Playoff Berth (조직변화와 성과 간 상호역동에 관한 연구: 미국프로농구팀의 트레이드와 플레이오프 진출 여부에 따른 조절된 매개효과)

  • Philsoo Kim;Tae Sung Jung;Sang Bum Lee;Sang Hyun Lee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.4
    • /
    • pp.117-129
    • /
    • 2023
  • Organizations must seek change in order to adapt to environmental changes and achieve better performance. However, despite this obvious statement, empirical analysis has been almost non-existent due to the difficulty of manipulating organizational performance or change. In this study, we overcame these limitations and analyzed the causes and effects of organizational change by assuming a professional sports team as a venture company, which is relatively easy to objectively measure and evaluate organizational change or performance. We systematically collected and preprocessed traditional and advanced metrics of National Basketball Association (NBA) statistics along with preprocessed trade data from eight years of regular seasons (2014~2015-2021~2022) to analyze our research model. Assessment of process macro model 7 derives the following empirical result. The results of the empirical analysis depict that NBA teams with low organizational performance in the previous season are more likely to make organizational changes through player trades to improve performance. Into the bargain player trades mediate the static relationship between the winning percentage in the previous season and the winning percentage in the current season. However, the indirect effect of a team's previous season's performance on player trades appears to vary depending on the current situations and context of each NBA team. Teams that made the playoffs in the previous season tend to make fewer trades than teams that did not and the previous season's performance is highly correlated with the current season's performance. On the other hand, teams that did not make the playoffs in the previous season tend to make a relatively larger amount of player trades in total, and the mediating effect of trades vanishes in this case. In other words, teams that did not make the playoffs in the previous season experience a larger change in performance due to trades than teams that made the playoffs, even if they achieved the same winning percentage. This empirical analysis of the inverse relationship between organizational change and the performance of professional sports teams has both theoretical and practical implications in the field of sports industry and management by analyzing the fundamentals of organizational change and the performance of professional sports teams.

  • PDF

The Hybrid Organization's Response to Conflicting Institutional Demands: A Case Study about Social Ventures (하이브리드 조직의 모순 대응 전략 변화: 소셜벤처 노을과 에누마 사례를 중심으로)

  • Jin, Wooseok;Seong, Jieun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.5
    • /
    • pp.151-168
    • /
    • 2022
  • Nowadays companies are required to achieve social goals beyond maximizing shareholder profits. Accordingly, it is important to pursue both the economic and social goals of a company at the same time. Thus the importance of hybrid organizations is increasing theoretically and practically. In particular, since hybrid organizations essentially have the complexity of pursuing both economic and social purposes, the institutional demands of various stakeholders surrounding hybrid organizations are also conflicting. Several previous studies have considered how hybrid organizations respond to these conflicting institutional demands, but most studies are limited to studying at a specific point in time. As a result, there was a limit to analyzing the dynamics in response to conflicting institutional demands as the hybrid organization expanded its business. This study predicted that the hybrid organization would take selective coupling with conflicting institutional demands and that the process of responding to institutional demands would change according to the organization's growth. In this study, we had a case study about Noul and Enuma, social ventures that operate relatively advanced business models with outstanding results in innovation and technology. As a result, social ventures show a selective coupling for conflicting institutional demands, and the selective coupling process changes as their business model are advanced. Specifically, in the early stages of the business, it appears to respond to economic and social demands at the same time with a single business model. When the business is advanced, two or more business models are operated, some of which respond to economic needs and some of which respond to social needs. In the early stages of business, social ventures respond to economic and social demands with a single business model to gain legitimacy and survive in the institutional demands. But when they enter the business growth period, they try to separate business models which respond to economic and social values because they pursue sustainable growth and challenge large-scale missions. Overall, this study attempted to contribute to an in-depth understanding of hybrid organizations by identifying that the method of responding to conflicting institutional demands varies depending on the growth process of social ventures.

Changes of Distribution of Vascular Hydrophytes in the Nakdong River Estuary and Growth Dynamics of Schenoplectus triqueter, Waterfowl Food Plant (낙동강 하구의 수생관속식물의 분포 변화와 수금류(고니류)의 먹이식물인 세모고랭이의 성장 변화)

  • Kim, Gu-Yeon;Lee, Chan-Woo;Yoon, Hae-Soon;Joo, Gea-Jae
    • The Korean Journal of Ecology
    • /
    • v.28 no.5
    • /
    • pp.335-345
    • /
    • 2005
  • A study on changes on the distribution of vascular hydrophytes and the growth pattern of Schenoplectus triqueter (Scirpus triqueter) was undertaken at the Nakdong River estuary from 2002 to 2004. The change was due to physical alteration of the estuary for the past 25 years. These plant species are the major food sources for winter waterfowl. A total of 32 species of vascular hydrophytes from 17 families were found in the West Nakdong River (freshwater), the main channel of Nakdong River (freshwater) and the Nakdong River Estuary (brackish water). After the construction of the barrage on the estuary in 1987, the number of hydrophytes has remarkably increased to 17 species (5 species in 1985) in the main channel of the River. In particular, a community of Eurale ferox was found at the backwater wetland of the Daejeo side of the main channel. The introduced species of Eichhornia crassipes and Pistia stratiotes that were epidemic in 2001 at West Nakdong River was not found any more. The other species such as Nymphoides indica, Myriophyllum spicatum, Ruppia spp. were rediscovered. The large area (about 1,300ha) of Zostera spp. was the main sources of food for swans, but disappeared because of direct and indirect impacts of reclamation in the River estuary. Currently, there remains a small patch of Zostera spp. and about 250ha of S. triqueter. Schenoplectus triqueter grew mostly between April-September and tuber formed, between September-October. The growth of S. triqueter up to $60\sim80cm$ in length was observed in 5 sites out of the 7 sites in brackish area. Tubers of S. triqueter were eaten by waterfowls such as swans as winter food. In five sites, tubers took $44\sim57%$ of total biomass in October. Tubers were found in deep layers; $5\sim15cm$ (9%), $15\sim25cm$ (28%), $25\sim40cm$ (55%), below 40cm $(6\sim7%)$. The distribution of vascular hydrophytes has remarkably changed in the Nakdong River Estuary due to the reclamation of the area. In order to determine the extent of changes of the distribution of these plants and the carrying capacity of the area for waterfowl, an intensive research is urgently needed.

Future Changes in Global Terrestrial Carbon Cycle under RCP Scenarios (RCP 시나리오에 따른 미래 전지구 육상탄소순환 변화 전망)

  • Lee, Cheol;Boo, Kyung-On;Hong, Jinkyu;Seong, Hyunmin;Heo, Tae-kyung;Seol, Kyung-Hee;Lee, Johan;Cho, ChunHo
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.303-315
    • /
    • 2014
  • Terrestrial ecosystem plays the important role as carbon sink in the global carbon cycle. Understanding of interactions of terrestrial carbon cycle with climate is important for better prediction of future climate change. In this paper, terrestrial carbon cycle is investigated by Hadley Centre Global Environmental Model, version 2, Carbon Cycle (HadGEM2-CC) that considers vegetation dynamics and an interactive carbon cycle with climate. The simulation for future projection is based on the three (8.5/4.5/2.6) representative concentration pathways (RCPs) from 2006 to 2100 and compared with historical land carbon uptake from 1979 to 2005. Projected changes in ecological features such as production, respiration, net ecosystem exchange and climate condition show similar pattern in three RCPs, while the response amplitude in each RCPs are different. For all RCP scenarios, temperature and precipitation increase with rising of the atmospheric $CO_2$. Such climate conditions are favorable for vegetation growth and extension, causing future increase of terrestrial carbon uptakes in all RCPs. At the end of 21st century, the global average of gross and net primary productions and respiration increase in all RCPs and terrestrial ecosystem remains as carbon sink. This enhancement of land $CO_2$ uptake is attributed by the vegetated area expansion, increasing LAI, and early onset of growing season. After mid-21st century, temperature rising leads to excessive increase of soil respiration than net primary production and thus the terrestrial carbon uptake begins to fall since that time. Regionally the NEE average value of East-Asia ($90^{\circ}E-140^{\circ}E$, $20^{\circ}N{\sim}60^{\circ}N$) area is bigger than that of the same latitude band. In the end-$21^{st}$ the NEE mean values in East-Asia area are $-2.09PgC\;yr^{-1}$, $-1.12PgC\;yr^{-1}$, $-0.47PgC\;yr^{-1}$ and zonal mean NEEs of the same latitude region are $-1.12PgC\;yr^{-1}$, $-0.55PgC\;yr^{-1}$, $-0.17PgC\;yr^{-1}$ for RCP 8.5, 4.5, 2.6.