DOI QR코드

DOI QR Code

Five-year monitoring of microbial ecosystem dynamics in the coastal waters of the Yeongheungdo island, Incheon, Korea

대한민국 인천 영흥도 인근 해역 미소생태계의 5년간의 군집구조 변화 모니터링

  • Sae-Hee Kim (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Jin Ho Kim (College of Ocean Sciences, Jeju National University) ;
  • Yoon-Ho Kang (Water Environment Research Department, National Institute of Environmental Research) ;
  • Bum Soo Park (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Myung-Soo Han (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Jae-Hyoung Joo (Division of Bioresource Utilization, Honam National Institute of Biological Resources)
  • 김세희 (한양대학교 생명과학과) ;
  • 김진호 (제주대학교 지구해양과학과) ;
  • 강윤호 (국립환경과학원 물환경연구부) ;
  • 박범수 (한양대학교 생명과학과) ;
  • 한명수 (한양대학교 생명과학과) ;
  • 주재형 (국립호남권생물자원관 환경소재연구부)
  • Received : 2022.05.20
  • Accepted : 2023.08.24
  • Published : 2023.09.30

Abstract

In this study, changes in the microbial ecosystem of the Yeongheungdo island coastal waters were investigated for five years to collect basic data. To evaluate the influence of distance from the coast on the microbial ecosystem, four sites, coastal Site (S1) and 0.75, 1.5, and 3 km away from the coast, were set up and the changes in physicochemical and biological factors were monitored. The results showed seasonal changes in water temperature, dissolved oxygen, salinity, and pH but with no significant differences between sites. For nutrients, the concentration of dissolved inorganic nitrogen increased from 6.4 μM in April-June to 16.4 μM in July-November, while that of phosphorus and silicon phosphate increased from 0.4 μM and 2.5 μM in April-June to 1.1 μM and 12.0 μM in July-November, respectively. Notably, phosphorus phosphate concentrations were lower in 2014-2015 (up to 0.2 μM) compared to 2016-2018 (up to 2.2 μM), indicating phosphorus limitation during this period. However, there were no differences in nutrients with distance from the coast, indicating that there was no effect of distance on nutrients. Phytoplankton (average 511 cells mL-1) showed relatively high biomass (up to 3,370 cells mL-1) in 2014-2015 when phosphorus phosphate was limited. Notably, at that time, the concentration of dissolved organic carbon was not high, with concentrations ranging from 1.1-2.3 mg L-1. However, no significant differences in biological factors were observed between the sites. Although this study revealed that there was no disturbance of the ecosystem, further research and more basic data on the microecosystem are necessary to understand the ecosystem of the Incheon.

인천 영흥도는 대한민국에서 가장 큰 하천인 한강의 담수가 유입되어 영양염의 변화가 예상되는 해역이다. 특히 해양의 영양염의 변화는 식물플랑크톤을 포함한 미소생태계의 변화를 야기시키고, 어패류와 같은 상위 단계의 현존량에도 영향을 주는 것으로 알려져 있다. 인천 영흥도 연안은 국내의 주요 수산물 생산지임에도 불구하고 미소생태계의 기초자료조차 부족한 실정이다. 따라서 본 연구에서는 인천 영흥도의 기초자료 수집을 위해, 2014년부터 2018년까지 5년간 미소생태계를 조사하였다. 특히, 연안에서 유입되는 담수의 영향을 거리를 통해 비교하기 위해, 연안 정점(S1)과 연안으로부터 0.75, 1.5, 3 km 떨어진 대조구 정점을 설정하여 물리·화학·생물학적 요인의 변화를 모니터링했다. 그 결과 수온(15.7~26.7℃), 용존 산소(5.73~14.31 mg L-1), 염분도(28.5~34.1) 및 pH(6.65~8.80)는 계절에 따른 변화만 관찰되었을 뿐, 정점에 따른 유의미한 차이는 관찰되지 않았다. 영양염의 경우, 용존무기질소는 4~6월에 평균 6.4 μM의 농도에서 7~11월 16.4 μM로 증가하였고, 인산 인 및 규산 규소 역시 4~6월 각각 0.4 μM, 2.5 μM에서 7~11월 1.1 μM, 12.0 μM로 그 농도가 증가하였다. 특히 인산 인은 2014~2015년 최대 0.2 μM로 2016~2018년(2.2 μM)에 비해 낮은 농도로 관찰되어, 해당 기간동안 인산 인 제한 현상이 나타나며 계절에 따른 차이는 보였으나, 서해의 뚜렷한 조석차에 의해 정점 간 차이는 나타나지 않았다(Table S1). 연간 댐 방류량이 낮았던 2014~2015년 조사 정점에서 인산 인 제한현상이 두드러졌고, 해당 시기 식물플랑크톤의 현존량은 최대 3,370 cells mL-1으로 높게 관찰되었다. 그러나 해당 시기, 용존유기탄소 혹은 박테리아의 현존량 증가는 관찰되지 않았다. 생물학적 요인 역시 3 km의 거리에 따른 정점 간 차이는 관찰되지 않았으나, 계절 및 담수 유입에 따른 미소생태계 변화에 관한 기초자료를 축적할 수 있었다. 본 연구를 통해 미소생태계의 기초자료 수집을 통한 인천 연안의 생태계를 이해하였으며, 다양한 오염원으로부터의 교란을 방지하기 위해 인천 영흥도에서의 지속적인 모니터링이 필요할 것으로 사료된다.

Keywords

Acknowledgement

이 논문은 2023년 해양수산부 재원으로 해양수산과학기술진흥원 (선체부착생물 관리 및 평가기술개발, 20210651), 환경부의 재원으로 국립호남권생물자원관(HNIBR202302117), 정부(과학기술정보통신부)의 재원으로 한국연구재단(No. 2022R1C1C1003582)의 지원을 받아 수행된 연구임.

References

  1. Asmala E, L Haraguchi, H Jakobsen, P Massicotte and J Carstensen. 2018. Nutrient availability as major driver of phytoplankton-derived dissolved organic matter transformation in coastal environment. Biogeochemistry 137:93-104. https://doi.org/10.1007/s10533-017-0403-0
  2. Baek SH, K You and MS Han. 2017. Analysis of environmental factors related to seasonal variation of bacteria and heterotrophic nanoflagellate in Kyeonggi bay, Korea. Korean J. Environ. Biol. 35:198-206. https://doi.org/10.11626/KJEB.2017.35.2.198
  3. Cloern JE. 1996. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California. Rev. Geophys. 34:127-168. https://doi.org/10.1029/96RG00986
  4. Deininger A, CL Faithfull and AK Bergstrom. 2017. Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon. Ecology 98:982-994. https://doi.org/10.1002/ecy.1758
  5. Escobar IC, AA Randall and JS Taylor. 2001. Bacterial growth in distribution systems: effect of assimilable organic carbon and biodegradable dissolved organic carbon. Environ. Sci. Technol. 35:3442-3447. https://doi.org/10.1021/es0106669
  6. Fahnenstiel G, S Pothoven, H Vanderploeg, D Klarer, T Nalepa and D Scavia. 2010. Recent changes in primary production and phytoplankton in the offshore region of southeastern Lake Michigan. J. Gt. Lakes Res. 36:20-29. https://doi.org/10.1016/j.jglr.2010.03.009
  7. Gao Y, Z Jiang, J Liu, Q Chen, J Zeng and W Huang. 2013. Seasonal variations of net-phytoplankton community structure in the southern Yellow Sea. J. Ocean Univ. 12:557-567. https://doi.org/10.1007/s11802-013-2258-x
  8. Guo L, PH Santschi and KW Warnken. 1995. Dynamics of dissolved organic carbon (DOC) in oceanic environments. Limnol. Oceanogr. 40:1392-1403. https://doi.org/10.4319/lo.1995.40.8.1392
  9. Hung CC, GC Gong, WC Chou, CC Chung, MA Lee, Y Chang, HY Chen, SJ Huang, Y Yang, WR Yang, WC Chung, SL Li and E Laws. 2010. The effect of typhoon on particular organic carbon flux in the southern East China Sea. Biogeosciences 7:3007-3018. https://doi.org/10.5194/bg-7-3007-2010
  10. Koh CH and JS Khim. 2014. The Korean tidal flat of the Yellow Sea: Physical setting, ecosystem and management. Ocean Coastal Manage. 102:398-414. https://doi.org/10.1016/j.ocecoaman.2014.07.008
  11. Lagadeuc Y, M Boute and J Dodson. 1997. Effect of vertical mixing on the vertical distribution of copepods in coastal waters. J. Plankton Res. 19:1183-1204. https://doi.org/10.1093/plankt/19.9.1183
  12. Lennon JT, AM Faiia, X Feng and KL Cottingham. 2006. Relative importance of CO2 recycling and CH4 pathways in lake food webs along a dissolved organic carbon gradient. Limnol. Oceanogr. 51:1602-1613. https://doi.org/10.4319/lo.2006.51.4.1602
  13. Liu X, W Xiao, MR Landry, KP Chiang, L Wang and B Huang. 2016. Responses of phytoplankton communities to environmental variability in the East China Sea. Ecosystems 19:832-849. https://doi.org/10.1007/s10021-016-9970-5
  14. Loder MG, C Meunier, KH Wiltshire, M Boersma and N Aberle. 2011. The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea. Mar. Biol. 158:1551-1580. https://doi.org/10.1007/s00227-011-1670-2
  15. Maier SR, T Kutti, RJ Bannister, JKH Fang, P van Breugel, P van Rijswijk and D van Oevelen. 2020. Recycling pathways in cold-water coral reefs: Use of dissolved organic matter and bacteria by key suspension feeding taxa. Sci. Rep. 10:9942. https://doi.org/10.1038/s41598-020-66463-2
  16. Mo KH, YJ Park, EY Jung, YG Kim, CH Jeong and KN Han. 2012. Comparisons of growth and mortality of the tidal mudflat oyster Crassostrea gigas by the net bag rack culture system in two districts in Western Korea. Korean J. Malacol. 28:45-54. https://doi.org/10.9710/kjm.2012.28.1.045
  17. Muhlenbruch M, HP Grossart, F Eigemann and M Voss. 2018. Mini-review: Phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ. Microbiol. 20:2671-2685. https://doi.org/10.1111/1462-2920.14302
  18. Omori M and T Ikeda. 1984. Methods in Marine Zooplankton Ecology. Wiley. New York, USA.
  19. Porter K and Y Feig. 1980. The use of DAPI for identification and enumeration of bacteria and blue-green algae. Limnol. Oceanogr. 25:943-948. https://doi.org/10.4319/lo.1980.25.5.0943
  20. Schultes S, C Lambert, P Pondaven, R Corvaisier, S Jansen and O Ragueneau. 2010. Recycling and uptake of Si(OH)4 when protozoan grazers feed on diatoms. Protist 161:288-303. https://doi.org/10.1016/j.protis.2009.10.006
  21. Somsap N, N Gajaseni and A Piumsomboon. 2015. Physico-chemical factors influencing blooms of Chaetoceros spp. and Ceratium furca in the Inner Gulf of Thailand. Agric. Nat. Resour. 49:200-210.
  22. Sondergaard M, PJLB Williams, G Cauwet, B Riemann, C Robinson, S Terzic, EMS Woodward and J Worm. 2000. Net accumulation and flux of dissolved organic carbon and dissolved organic nitrogen in marine plankton communities. Limnol. Oceanogr. 45:1097-1111. https://doi.org/10.4319/lo.2000.45.5.1097
  23. Tanaka T and F Rassoulzadegan. 2002. Full-depth profile (0-2000 m) of bacteria, heterotrophic nanoflagellates and ciliates in the NW Mediterranean Sea: Vertical partitioning of microbial trophic structures. Deep Sea Res. Part II Top. Stud. Oceanogr. 49:2093-2107. https://doi.org/10.1016/S0967-0645(02)00029-2
  24. Tilstone GH, BM Miguez, FG Figueiras and EG Fermin. 2000. Diatom dynamics in a coastal ecosystem affected by upwelling: coupling between species succession, circulation and biogeochemical processes. Mar. Ecol.-Prog. Ser. 205:23-41. https://doi.org/10.3354/meps205023
  25. Traving SJ, O Rowe, NM Jakobsen, H Sorensen, J Dinasquet, CA Stedmon, A Andersson and L Riemann. 2017. The effect of increased loads of dissolved organic matter on estuarine microbial community composition and function. Front. Microbiol. 8:351. https://doi.org/10.3389/fmicb.2017.00351
  26. Verlecar XN and S Desai. 2004. Phytoplankton Identification Manual. National Institute of Oceanography. Goa, India.
  27. Wang BD, XL Wang and R Zhan. 2003. Nutrient conditions in the Yellow Sea and the East China Sea. Estuar. Coast. Shelf Sci. 58:127-136. https://doi.org/10.1016/S0272-7714(03)00067-2
  28. Zhao Y, L Zhao, T Xiao, C Liu, J Sun, F Zhou, S Liu and L Huang. 2013. Temporal variation of picoplankton in the spring bloom of Yellow Sea, China. Deep Sea Res. Part II Top. Stud. Oceanogr. 97:72-84. https://doi.org/10.1016/j.dsr2.2013.05.015
  29. Zhou ZX, RC Yu and MJ Zhou. 2017. Seasonal succession of microalgal blooms from diatoms to dinoflagellates in the East China Sea: A numerical simulation study. Ecol. Model. 360:150-162. https://doi.org/10.1016/j.ecolmodel.2017.06.027
  30. Zweifel UL. 1999. Factors controlling accumulation of labile dissolved organic carbon in the Gulf of Riga. Estuar. Coast. Shelf Sci. 48:357-370. https://doi.org/10.1006/ecss.1998.0428