Browse > Article
http://dx.doi.org/10.14191/Atmos.2014.24.3.303

Future Changes in Global Terrestrial Carbon Cycle under RCP Scenarios  

Lee, Cheol (National Institute of Meteorological Research)
Boo, Kyung-On (National Institute of Meteorological Research)
Hong, Jinkyu (Ecosystem-Atmosphere Process Lab., Department of Atmospheric Sciences)
Seong, Hyunmin (Ecosystem-Atmosphere Process Lab., Department of Atmospheric Sciences)
Heo, Tae-kyung (National Institute of Meteorological Research)
Seol, Kyung-Hee (Korea Institute of Atmosphere Prediction Systems)
Lee, Johan (National Institute of Meteorological Research)
Cho, ChunHo (National Institute of Meteorological Research)
Publication Information
Atmosphere / v.24, no.3, 2014 , pp. 303-315 More about this Journal
Abstract
Terrestrial ecosystem plays the important role as carbon sink in the global carbon cycle. Understanding of interactions of terrestrial carbon cycle with climate is important for better prediction of future climate change. In this paper, terrestrial carbon cycle is investigated by Hadley Centre Global Environmental Model, version 2, Carbon Cycle (HadGEM2-CC) that considers vegetation dynamics and an interactive carbon cycle with climate. The simulation for future projection is based on the three (8.5/4.5/2.6) representative concentration pathways (RCPs) from 2006 to 2100 and compared with historical land carbon uptake from 1979 to 2005. Projected changes in ecological features such as production, respiration, net ecosystem exchange and climate condition show similar pattern in three RCPs, while the response amplitude in each RCPs are different. For all RCP scenarios, temperature and precipitation increase with rising of the atmospheric $CO_2$. Such climate conditions are favorable for vegetation growth and extension, causing future increase of terrestrial carbon uptakes in all RCPs. At the end of 21st century, the global average of gross and net primary productions and respiration increase in all RCPs and terrestrial ecosystem remains as carbon sink. This enhancement of land $CO_2$ uptake is attributed by the vegetated area expansion, increasing LAI, and early onset of growing season. After mid-21st century, temperature rising leads to excessive increase of soil respiration than net primary production and thus the terrestrial carbon uptake begins to fall since that time. Regionally the NEE average value of East-Asia ($90^{\circ}E-140^{\circ}E$, $20^{\circ}N{\sim}60^{\circ}N$) area is bigger than that of the same latitude band. In the end-$21^{st}$ the NEE mean values in East-Asia area are $-2.09PgC\;yr^{-1}$, $-1.12PgC\;yr^{-1}$, $-0.47PgC\;yr^{-1}$ and zonal mean NEEs of the same latitude region are $-1.12PgC\;yr^{-1}$, $-0.55PgC\;yr^{-1}$, $-0.17PgC\;yr^{-1}$ for RCP 8.5, 4.5, 2.6.
Keywords
Terrestrial carbon cycle; climate change; RCP scenario; HadGEM2;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Beck, P. S A., and S. J. Goetz, 2011: Pieter S A Beck and Scott J Goetz. Environ. Res. Lett., 6, doi:10.1088/ 1748-9326/6/4/045501.
2 Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller, Jr., and Z. Chen, 2007: IPCC AR4 WG II.
3 Van Vuuren, D. P., M. G. J. den Elzen, P. L. Lucas, B. Eickhout, B. J. Strengers, B. van Ruijven, S. Wonink, and R. van Houdt, 2007: Stabilizing greenhouse gas concentrations at low levels : an assessment of reduction strategies and costs. Climatic Change, 81, 119- 159, doi:10.1007/s10584-006-9172-9.   DOI   ScienceOn
4 Xu, C.-H., and Y. Xu, 2012: The projection of temperature and precipitation over china under RCP scenarios using a CMIP5 multi-model ensemble. Atmos.Oceanic Sci. Lett., 5, 527-533.
5 Zhao, M., and S. W. Running, 2010: Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940-943, doi:10.1126/science.1192666.   DOI   ScienceOn
6 Baek, H.-J., and Coauthors, 2013: Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pac. J. Atmos. Sci., doi:10.1007/s13143-013-0053-7.   DOI
7 Betts, R. A., P. M. Cox, M. Collins, P. P. Harris, C. Huntingford, and C. D. Jones, 2004: The role of ecosystem- atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor. Appl. Climatol., 78, 157-175.
8 Clarke, L., J. Edmonds, H. Jacoby, H. Pitcher, J. Reilly, and R. Richels, 2007: Scenarios of greenhouse gas emissions and atmospheric concentrations, U.S. Climate Change Science Program and the Subcommittee on Global Change Research Synthesis and Assessment Product 2.1 Sub-Rep. 2.1A.
9 Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-system model-HadGEM2. Geosci. Model Dev., 4, 1051-1075, doi:10.5194/gmd- 4-1051-2011.   DOI
10 Cox, P. M., 2001: Description of the TRIFFID dynamic global vegetation model. Hadley Centre Tech. Note, 24, 17.
11 Hijioka, Y., Y. Matsuoka, H. Nishimoto, M. Masui, and M. Kainuma, 2008: Global GHG emissions scenarios under GHG concentration stabilization targets. J. Global Environ. Eng., 13, 97-108.
12 Essery, R., M. Best, R. Betts, P. Cox, and C. Taylor, 2001: Explicit representation of subgrid heterogeneity in a GCM land-surface scheme. Clim. Dynam., submitted.
13 Fischer, M. L., D. P. Billesbach, J. A. Berry, W. J. Riley, and M. S. Torn, 2007: Spatiotemporal variations in growing season exchanges of CO2, H2O, and sensible heat in agricultural fields of the southern great plains. Earth Interact., 11, 1-21, doi:10.1175/EI231.1.   DOI
14 Good, P., C. Jones, J. Lowe, R. Betts, and B. Booth, 2010: Quantifying environmental drivers of future tropical forest extent. J. Climate, 24, 1337-1349.
15 Jones, C., and Coauthors, 2013: Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under four epresentative Concentration Pathways. J. Climate, 26, doi:10.1175/JCLI-D-12-00554.1.   DOI   ScienceOn
16 Jang, J.-H., K. Hong, Y.-H. Byun, H. J. Kwon, N. M. Chae, J.-H. Lim, and J. Kim, 2010: A sensitivity analysis of JULES land surface model for two major ecosystems in Korea : Influence of biophysical parameters on the simulation of gross primary productivity and ecosystem respiration. Korean J. Agric. Forest Meteor., 12.
17 Jolly, W. M., M. Dobbertin, N. E. Zimmermann, and M. Reichstein, 2005: Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps, Geophys. Res. Lett., 32, L18409, doi:10.1029/2005GL023252.   DOI   ScienceOn
18 Jones, C. D., and Coauthors, 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543-570.   DOI
19 Liddicoat, S., C. Jones, and E. Robertson, 2013: CO2 emissions determined by HadGEM2-ES to be compatible with the representative concentration pathway scenarios and their extensions. J. Climate, 26, doi:10.1175/ JCLI-D-12-00569.1.
20 Knutti, R., and J. Sedlá ek, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 3, 369-373, doi:10.1038/nclimate1716.   DOI
21 Martin, G. M., and L. C. Levine, 2012: The influence of dynamic vegetation on the present-day simulation and future projections of the South Asian summer monsoon in the HadGEM2 family. Earth Syst. Dynam., 3, 245-261.   DOI
22 Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747-756, doi:10.1038/nature08823.   DOI   ScienceOn
23 Mynenl, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nrmmanl, 1997 : Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698-702, doi:10.1038/386698a0.   DOI   ScienceOn
24 Notaro, M., S. Vavrus, and Z. Liu, 2007: Global vegetation and climate due to future increases in CO2 as projected by a fully coupled model with dynamic vegetation. J. Climate, 20, 70-90.   DOI
25 Piao, S., X. Wang, P. Ciais, B. Zhu, T. Wang, and J. Liu, 2011: Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biol., 17, 3228-3239, doi:10.1111/j.1365-2486.2011.02419.   DOI   ScienceOn
26 Rogelj, J., M. Meinshausen, and R. Knutti, 2012: Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature Climate Change, 2, 248-253, doi:10.1038/nclimate1385.   DOI
27 Shao, P., X. Zeng, K. Sakaguchi, R. K. Monson, and X. Zeng, 2013: Terrestrial carbon cycle - climate relations in eight CMIP5 earth system models. J. Climate, 26, 8744-8764, doi:http://dx.doi.org/10.1175/JCLI-D-12-00831.1.   DOI   ScienceOn
28 Port, U., V. Brovkin, and M. Claussen, 2005: The influence of vegetation dynamics on anthropogenic climate change. Earth Syst. Dynam., 3, 233-243.
29 Quere C. Le, and Coauthors, 2013: The global carbon budget 1959-2011. Earth Syst. Sci. Data, 5, 165-185.   DOI
30 Riahi, K., A. Gruebler, and N. Nakicenovic, 2007: Scenarios of longterm socio-economic and environmental development under climate stabilization. Technol. Forecasting Soc. Change, 74, 887-935.   DOI   ScienceOn