• Title/Summary/Keyword: dynamical systems

검색결과 444건 처리시간 0.026초

Collapsing effects in numerical simulation of chaotic dynamical systems

  • Daimond, P.;Kloeden, P.;Pokrovskii, A.;Suzuki, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.753-757
    • /
    • 1994
  • In control system design, whether the various subsystems are in discrete time or continuous time, the state space is usually regarded as a continuum. However, when the system is implemented, some subsystems may have a state space which is a subset of finite computer arithmetic. This is an important concern if a subsystem has chaotic behaviour, because it is theoretically possible for rich and varied motions in a continuum to collapse to trivial and degenerate behaviour in a finite and discrete state space [5]. This paper discusses new ways to describe these effects and reports on computer experiments which document and illustrate such collapsing behaviour.

  • PDF

TMS320C3x 칩을 이용한 로보트 매뉴퓰레이터의 실시간 신경 제어기 실현 (Implementation of a real-time neural controller for robotic manipulator using TMS 320C3x chip)

  • 김용태;한성현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.65-68
    • /
    • 1996
  • Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. The TMS32OC31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the, network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time, control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Training an Artificial Neural Network for Estimating the Power Flow State

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.275-280
    • /
    • 2005
  • The principal context of this research is the approach to an artificial neural network algorithm which solves multivariable nonlinear equation systems by estimating the state of line power flow. First a dynamical neural network with feedback is used to find the minimum value of the objective function at each iteration of the state estimator algorithm. In second step a two-layer neural network structures is derived to implement all of the different matrix-vector products that arise in neural network state estimator analysis. For hardware requirements, as they relate to the total number of internal connections, the architecture developed here preserves in its structure the pronounced sparsity of power networks for which state the estimator analysis is to be carried out. A principal feature of the architecture is that the computing time overheads in solution are independent of the dimensions or structure of the equation system. It is here where the ultrahigh-speed of massively parallel computing in neural networks can offer major practical benefit.

  • PDF

Real-Time Optimization for Mobile Robot Based on Algorithmic Control

  • Kobayashi, Tomoaki;Maenishi, Junichi;Imae, Joe;Zhai, Guisheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2102-2107
    • /
    • 2005
  • In this paper, a real-time optimization method for nonlinear dynamical systems is proposed. The proposed method is based on the algorithms of numerical solutions for optimal control problems. We deal with a real-time collision-free motion control of a nonholonomic mobile robot, which has input restrictions of actuators. The effectiveness of the algorithmic method is demonstrated through numerical and experimental results. The mobile robot which we have developed is able to avoid moving obstacles skillfully. Therefore the proposed controller works well in real time.

  • PDF

클러터 환경에서 다중 기동표적 추적트랙 초기화 (Track Initiation Algorithms for Multiple Maneuvering Target Tracking)

  • 배승한;송택렬
    • 제어로봇시스템학회논문지
    • /
    • 제14권8호
    • /
    • pp.733-739
    • /
    • 2008
  • This article proposes algorithms for the automatic initiation of the tracks of maneuvering targets in cluttered environments. These track initiation algorithms consist of IPDA-AI(Integrated Probabilistic Data Association-Amplitude Information) and MPDA(Most Probable Data Association) in an Interacting Multiple Model(IMM) configuration, and they are referred to as the IMM-IPDAF-AI and IMM-MPDA respectively. The IMM portion consists of several filters based on different dynamical models to handle target maneuvers. Each of the filters utilizes an IPDA-AI(or MPDA) algorithm to deal with the problem of track existence in the presence of clutter. Although the primary purpose of this study is to deal with the track initiation problem, the IMM-IPDAF-AI and IMM-MPDA can also be used for the maintenance of existing tracks and the termination of tracks for targets when they disappear. For illustrative purposes, simulation is used to compare the performance of the algorithms proposed to other track formation algorithms.

SLAM 기반 GPS/INS/영상센서를 결합한 헬리콥터 항법시스템의 구성 (SLAM Aided GPS/INS/Vision Navigation System for Helicopter)

  • 김재형;유준;곽휘권
    • 제어로봇시스템학회논문지
    • /
    • 제14권8호
    • /
    • pp.745-751
    • /
    • 2008
  • This paper presents a framework for GPS/INS/Vision based navigation system of helicopters. GPS/INS coupled algorithm has weak points such as GPS blockage and jamming, while the helicopter is a speedy and high dynamical vehicle amenable to lose the GPS signal. In case of the vision sensor, it is not affected by signal jamming and also navigation error is not accumulated. So, we have implemented an GPS/INS/Vision aided navigation system providing the robust localization suitable for helicopters operating in various environments. The core algorithm is the vision based simultaneous localization and mapping (SLAM) technique. For the verification of the SLAM algorithm, we performed flight tests. From the tests, we confirm the developed system is robust enough under the GPS blockage. The system design, software algorithm, and flight test results are described.

퍼지 모델 기반 제어기를 이용한 비선형 동적 시스템의 제어에 관한 연구 (A Study on the Control of Nonlinear Dynamical System Using the Fuzzy Model Based Controller)

  • 장욱;권오국;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.181-184
    • /
    • 1997
  • This paper propose the systematic procedure of the fuzzy model based controller for the continuous nonlinear system. Fuzzy controller have been successfully applied to many uncertain and complex industrial plants. The design of the fuzzy controller mainly depends on the knowledge from the expert who are familiar with the plant by trial and error. Therefore we need more systematic approach to the design of the fuzzy controller. In this paper, we design fuzzy model based controller applied to the nonlinear system. Unlike the design procedures reported in[8] and[9], we use the nonlinear process directly in designing the controller. This controller has been successfully applied to an inverted pendulum.

  • PDF

Nonlinear Time Series Analysis Tool and its Application to EEG

  • Kim, Eung-Soo;Park, Kyung-Gyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.104-112
    • /
    • 2001
  • Simply, Nonlinear dynamics theory means the complicated and noise-like phenomena originated form nonlinearity involved in deterministic dynamical system. An almost all the natural signals have nonlinear property. However, there exist few analysis software tool or package for a research and development of applications. We develop nonlinear time series analysis simulator is to provide a common and useful tool for this purpose and to promote research and development of nonlinear dynamics theory. This simulator is consists of the following four modules such as generation module, preprocessing module, analysis module and ICA module. In this paper, we applied to Electroencephalograph (EEG), as it turned out, our simulator is able to analyze nonlinear time series. Besides, we could get the useful results using the various parameters. These results are used to diagnostic the brain diseases.

  • PDF

유동/구조 연성해석기법을 이용한 Foil Bearing의 변형 및 유동 특성 해석 (An Analysis of the Flow Characteristics and Deformation of a Multileaf Foil Bearing by Using the Fluid/structure Interaction Method)

  • 김영규;허남건
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.607-610
    • /
    • 2002
  • As machines become smaller and faster multileaf foil bearings are used to overcome the problems with heat, friction and wear Systems with foil bearings do not need a separate system for lubrication. These bearings are self acting and are therefore green systems. Until now, there have been many studies on the structural and dynamical performances. Therefore the object of the present study is to predict the flow and structural characteristics by using the Fluid/structure interaction method. The increase in RPM led to the increase in pressure, temperature difference, maximum velocity, Mach number, shear stress and torque. In the case of 90,000 RPM effects such as choking led to a non-lineararity in the system. Also the effect of eccentricity ratio was observed and showed that eccentricity increased the maximum pressure and the density difference while decreasing the shear stress and torque.

  • PDF

Nonlinear ship rolling motion subjected to noise excitation

  • Jamnongpipatkul, Arada;Su, Zhiyong;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • 제1권3호
    • /
    • pp.249-261
    • /
    • 2011
  • The stochastic nonlinear dynamic behavior and probability density function of ship rolling are studied using the nonlinear dynamical systems approach and probability theory. The probability density function of the rolling response is evaluated through solving the Fokker Planck Equation using the path integral method based on a Gauss-Legendre interpolation scheme. The time-dependent probability of ship rolling restricted to within the safe domain is provided and capsizing is investigated from the probability point of view. The random differential equation of ships' rolling motion is established considering the nonlinear damping, nonlinear restoring moment, white noise and colored noise wave excitation.