• 제목/요약/키워드: dynamic window

검색결과 254건 처리시간 0.022초

항공 라이다 데이터를 이용한 동적 가변 윈도우 기반 지형 분류 기법 (A Dynamic Variable Window-based Topographical Classification Method Using Aerial LiDAR Data)

  • 성철웅;이성규;박창후;이호준;김유성
    • Spatial Information Research
    • /
    • 제18권5호
    • /
    • pp.13-26
    • /
    • 2010
  • 본 논문에서는 항공 라이다 데이터를 이용하여 지형의 유형을 분류하는 과정에서 지형의 특성에 따라 지형 분류의 판정 단위를 가변적으로 변화시키는 동적 가변 윈도우 기반 지형 분류 기법을 제안한다. 제안된 동적 가변 윈도우 기반 지형 분류 기법에서는 지형의 특성과 반복 패턴에 따라 지형 분류의 판정 단위를 가변적으로 결정하여 지형 분류에 소요되는 시간을 감소시키고자 하였다. 또한, 본 논문에서는 실험을 통하여 동적 가변 윈도우 기반 지형 분류 기법의 시간효율과 정확도를 분석하고 최적의 최대 판정 윈도우 크기를 제시하였다. 실험 결과에 따르면 제안된 동적 가변 윈도우 기반 지형 분류 기법은 고정 윈도우 크기를 이용하는 기법과 유사한 정도의 정확성을 유지하면서도 빠른 지형 분류가 가능한 것으로 판명되었다.

물류 정보시스템을 위한 IEEE 802.11 무선랜 시스템에서 유전자 알고리듬을 이용한 Dynamic Contention Window 제어 알고리듬 (Dynamic Contention Window Control Algorithm Using Genetic Algorithm for IEEE 802.11 Wireless LAN Systems for Logistics Information Systems)

  • 이상헌;최우용;이상완
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2007년도 추계학술대회 및 정기총회
    • /
    • pp.330-340
    • /
    • 2007
  • IEEE 802.11 wireless LANs employ the backoff algorithm to avoid contentions among STAs when two or more STAs attempt to transmit their data frames simultaneously. The MAC efficiency can be improved if the CW values are adaptively changed according to the channel state of IEEE 802.11 wireless LANs. In this paper, we propose a dynamic contention window control algorithm using the genetic algorithm to improve the MAC throughput of IEEE 802.11 wireless LANs.

  • PDF

Reproducibility of Electromyography Signal Amplitude during Repetitive Dynamic Contraction

  • Mo, Seung-Min;Kwag, Jong-Seon;Jung, Myung-Chul
    • 대한인간공학회지
    • /
    • 제30권6호
    • /
    • pp.689-694
    • /
    • 2011
  • Objective: The aim of this study is to evaluate the fluctuation of signal amplitude during repetitive dynamic contraction based on surface electromyography(EMG). Background: The most previous studies were considered isometric muscle contraction and they were difference to smoothing window length by moving average filter. In practical, the human movement is dynamic state. Dynamic EMG signal which indicated as the nonstationary pattern should be analyzed differently compared with the static EMG signal. Method: Ten male subjects participated in this experiment, and EMG signal was recorded by biceps brachii, anterior/posterior deltoid, and upper/lower trapezius muscles. The subject was performed to repetitive right horizontal lifting task during ten cycles. This study was considered three independent variables(muscle, amplitude processing technique, and smoothing window length) as the within-subject experimental design. This study was estimated muscular activation by means of the linear envelope technique(LE). The dependent variable was set coefficient of variation(CV) of LE for each cycle. Results: The ANOVA results showed that the main and interaction effects between the amplitude processing technique and smoothing window length were significant difference. The CV value of peak LE was higher than mean LE. According to increase the smoothing window length, this study shows that the CV trend of peak LE was decreased. However, the CV of mean LE was analyzed constant fluctuation trend regardless of the smoothing window length. Conclusion: Based on these results, we expected that using the mean LE and 300ms window length increased reproducibility and signal noise ratio during repetitive dynamic muscle contraction. Application: These results can be used to provide fundamental information for repetitive dynamic EMG signal processing.

3D Global Dynamic Window Approach for Navigation of Autonomous Underwater Vehicles

  • Tusseyeva, Inara;Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권2호
    • /
    • pp.91-99
    • /
    • 2013
  • An autonomous unmanned underwater vehicle is a type of marine self-propelled robot that executes some specific mission and returns to base on completion of the task. In order to successfully execute the requested operations, the vehicle must be guided by an effective navigation algorithm that enables it to avoid obstacles and follow the best path. Architectures and principles for intelligent dynamic systems are being developed, not only in the underwater arena but also in related areas where the work does not fully justify the name. The problem of increasing the capacity of systems management is highly relevant based on the development of new methods for dynamic analysis, pattern recognition, artificial intelligence, and adaptation. Among the large variety of navigation methods that presently exist, the dynamic window approach is worth noting. It was originally presented by Fox et al. and has been implemented in indoor office robots. In this paper, the dynamic window approach is applied to the marine world by developing and extending it to manipulate vehicles in 3D marine environments. This algorithm is provided to enable efficient avoidance of obstacles and attainment of targets. Experiments conducted using the algorithm in MATLAB indicate that it is an effective obstacle avoidance approach for marine vehicles.

수정된 전역 DWA에 의한 자율이동로봇의 경로계획 (Path Planning for Autonomous Mobile Robots by Modified Global DWA)

  • 윤희상;박태형
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.389-397
    • /
    • 2011
  • The global dynamic window approach (DWA) is widely used to generate the shortest path of mobile robots considering obstacles and kinematic constraints. However, the dynamic constraints of robots should be considered to generate the minimum-time path. We propose a modified global DWA considering the dynamic constraints of robots. The reference path is generated using A* algorithm and smoothed by cardinal spline function. The trajectory is then generated to follows the reference path in the minimum time considering the robot dynamics. Finally, the local path is generated using the dynamic window which includes additional terms of speed and orientation. Simulation and experimental results are presented to verify the performance of the proposed method.

Delaunay Triangulation의 폴리건 검색속도 개선을 위한 T-Search와 Dynamic-Window 개념의 결합 (Integration of T-Search and Dynamic-Window Concept for Accelerated Searching Speed in Delaunay Triangulation)

  • 강현주;윤석준;공지영;김강수
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.681-687
    • /
    • 2003
  • Terrain surfaces have to be modeled in very detail and wheel-surface contacting geometry must be well defined in order to obtain proper ground-reaction and friction forces fur realistic simulation of off-road vehicles. Delaunay triangulation is one of the most widely used methods in modeling 3-dimensional terrain surfaces, and the T-search is a relevant algorithm for searching resulting triangular polygons. The T-search method searches polygons in a successive order and may not allow real-time computation of off-road vehicle dynamics if the terrain is modeled with many polygons, depending on the computer performance used in the simulation. The dynamic T-search, which is proposed in this paper, combines conventional T-search and the concept of the dynmaic-window search which uses reduced searching windows or sets of triangular surface polygons at each frame by taking advantage of the information regarding dynamic charactereistics of a simulated vehicle. Numerical tests show improvement of searching speeds by about 5% for randomly distributed triangles. For continuous search following a vehicle path, which occurs in actual vehicle simulation, the searching speed becomes 4 times faster.

가변 크기 Moving Window를 적용한 ATM 망에서의 동적 호 접속 제어 연구 (A dynamic connection admission control algorithm using variable-sized moving window in ATM networks)

  • 이수경;송주석
    • 한국통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.593-603
    • /
    • 1997
  • Connection admission decision in ATM networks requires decision made in real time using fast algorithm. It is difficult to construct a model of the multiplexed traffic and thus, approximation of the traffic load is necessary. In this paper, we propose a measurement-based dynamic CAC(Connection admission Control) in ATM(Asynchronous Transfer Mode) networks, which observes current traffic by the moving window and set the window size to the value which is computed from the measured cell loss amount. It is based on the measurements of the traffic load over an admission period that is load enough to reflect the current traffic behavior instead of analytic modeling. And, the dynamic reallocation of bandwidth for each class leads to effective bandwidth utilization. The performance of proposed method is analyzed through computer simulation. The performance of proposed method is analyzed by using SIMAN simulation package and FORTRAN language. As can be seen in the simulation result, cell loss performance and bandwidth utilization have been increased.

  • PDF

물류 정보시스템을 위한 IEEE 802.11 무선랜 시스템에서 유전자 알고리듬을 이용한 Dynamic Contention Window 제어 알고리듬 (Dynamic Contention Window Control Algorithm Using Genetic Algorithm in IEEE 802.11 Wireless LAN Systems for Logistics Information Systems)

  • 이상헌;최우용;이상완
    • 산업경영시스템학회지
    • /
    • 제32권3호
    • /
    • pp.10-19
    • /
    • 2009
  • Wireless LAN systems have been widely implemented for supporting the wireless internet services especially in the hotspot areas such as hospitals, homes, conference rooms, and so on. Compared with wired LAN systems, wireless LAN systems have the advantages of the users' mobility support and low implementation and maintenance costs. IEEE 802.11 wireless LAN systems employ the backoff algorithm to avoid contentions among STAs when two or more STAs attempt to transmit their data frames simultaneously. The MAC efficiency can be improved if the CW values are adaptively changed according to the channel state of IEEE 802.11 wireless LANs. In this paper, a dynamic contention window control algorithm is proposed using the genetic algorithm to improve the MAC throughput of IEEE 802.11 wireless LANs.

무인수상정 경로점 추종을 위한 강화학습 기반 Dynamic Window Approach (Dynamic Window Approach with path-following for Unmanned Surface Vehicle based on Reinforcement Learning)

  • 허진영;하지수;이준식;유재관;권용진
    • 한국군사과학기술학회지
    • /
    • 제24권1호
    • /
    • pp.61-69
    • /
    • 2021
  • Recently, autonomous navigation technology is actively being developed due to the increasing demand of an unmanned surface vehicle(USV). Local planning is essential for the USV to safely reach its destination along paths. the dynamic window approach(DWA) algorithm is a well-known navigation scheme as a local path planning. However, the existing DWA algorithm does not consider path line tracking, and the fixed weight coefficient of the evaluation function, which is a core part, cannot provide flexible path planning for all situations. Therefore, in this paper, we propose a new DWA algorithm that can follow path lines in all situations. Fixed weight coefficients were trained using reinforcement learning(RL) which has been actively studied recently. We implemented the simulation and compared the existing DWA algorithm with the DWA algorithm proposed in this paper. As a result, we confirmed the effectiveness of the proposed algorithm.

동적창과 Dijkstra 알고리즘을 이용한 항법 알고리즘에서 경로 설정 (The Pathplanning of Navigation Algorithm using Dynamic Window Approach and Dijkstra)

  • 김재준;지규인
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.94-96
    • /
    • 2021
  • 본 연구는 산업현장에서 사용되는 이동로봇이 익숙하지 못한 환경에서 목적지에 도착할 수 있는 항법 알고리즘을 개발하고자 한다. 이를 위해 동적창 접근(DWA)과 Dijkstra 경로설정 알고리즘을 결합하여 항법 알고리즘을 제안한다. 이를 성능 비교하기 위해 로컬 동적창 접근(LDWA), 글로벌 동적창 접근(GDWA), 고속 탐색 랜덤 트리 (RRT) 알고리즘을 비교 분석한다. LDWA과 GDWA을 적용한 Dijkstra 알고리즘을 활용한 항법 알고리즘을 구현하여 제한된 정보를 이용하여 이동로봇이 목적지에 도달할 수 있도록 한다. 이 알고리즘들의 목적지에 도착할 때까지 걸리는 시간, 장애물 회피와 계산복잡도에 대한 비교 분석한다. 위 알고리즘의 한계를 극복하기 위한 새로운 항법 알고리즘을 제안하고 제시된 최적화된 항법 알고리즘의 산업현장에서의 활용 방안을 모색한다.

  • PDF