• Title/Summary/Keyword: dynamic weight

Search Result 1,330, Processing Time 0.032 seconds

On the absolute maximum dynamic response of a beam subjected to a moving mass

  • Lotfollahi-Yaghin, Mohammad Ali;Kafshgarkolaei, Hassan Jafarian;Allahyari, Hamed;Ghazvini, Taher
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.55-67
    • /
    • 2015
  • Taking the mid-span/center-point of the structure as the reference point of capturing the maximum dynamic response is very customary in the available literature of the moving load problems. In this article, the absolute maximum dynamic response of an Euler-Bernoulli beam subjected to a moving mass is widely investigated for various boundary conditions of the base beam. The response of the beam is obtained by utilizing a robust numerical method so-called OPSEM (Orthonormal Polynomial Series Expansion Method). It is underlined that the absolute maximum dynamic response of the beam does not necessarily take place at the mid-span of the beam and thus the conventional analysis needs modifications. Therefore, a comprehensive parametric survey of the base beam absolute maximum dynamic response is represented in which the contribution of the velocity and weight of the moving inertial objects are scrutinized and compared to the conventional version (maximum at mid-span).

Dynamic Analysis of Stair Climbing for the Above-knee Amputee with Musculoskeletal Models (근골격 모델을 이용한 대퇴절단환자의 계단보행에 대한 동역학 해석)

  • Bae, Tae-Soo;Kim, Shin-Ki;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.133-138
    • /
    • 2007
  • It is important to understand the characteristics of amputee gait to develop more advanced prostheses. The aim of this study was quantitatively to analyze the stair climbing task for the above-knee amputee with a prosthesis and to predict muscle forces and joint moments at musculoskeletal joints by dynamic analysis. The three-dimensional musculoskeletal model of lower extremities was constructed by gait analysis and transformation software for one above-knee amputee and ten healthy people. The measured ground reaction forces and kinematical data of each joint by gait analysis were used as input data during inverse dynamic analysis. Lastly, dynamic analysis of above-knee amputee during stair climbing were performed using musculoskeletal models. The results showed that summed muscle farces of hip extensor of amputated leg were greater than those of sound leg but the opposite results were revealed at hip abductor and knee flexor of amputated leg. We could also find that the higher moments at hip and knee joint of sound leg were needed to overcome the flexion moment caused by body weight and amputated leg. In conclusion, dynamic analysis using musculoskeletal models may be a useful mean to predict muscle forces and joint moments for specific motion tasks related to rehacilitation therapy..

The Circadian Effects on Postural Stability in Young Adults

  • Son, Sung Min
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.3
    • /
    • pp.142-144
    • /
    • 2017
  • Purpose: Few studies have addressed the effect of diurnal circadian rhythms on postural stability, and thus the aim of the present study was to examine circadian effects on static and dynamic postural stability in young adults. Methods: Twenty-four subjects (9 men, 11 women: age=$22.20{\pm}1.77$, height=$167.20{\pm}10.47$, weight=$59.85{\pm}10.66$) from a university community volunteered for this study. Static and dynamic balance testing, which recorded using a Good Balance system (Good Balance, Metitur Ltd, Finland) was conducted at 9:00, 13:00, and 17:00 hours on two consecutive days, and the sequencing of static and dynamic balance tests were randomized. Results were analyzed using the non-parametric one-way repeated Friedman test in SPSS version 18.0 (SPSS Inc., Chicago, IL, USA), and variable found to be significant were subjected to Wilcoxon post hoc testing. Results: Static and dynamic balance showed significant difference at the three times assessments (test at 9:00, 13:00, and 17:00) during circadian. In the post hoc test of static (anteroposterior distance, mediolateral distance and COP (center of pressure) velocity) and dynamic balance (performance time), 13:00 was the longer and faster than 9:00. Conclusion: These results indicated that control of postural balance is influenced by diurnal circadian rhythms, and confirm that control of postural balance is more effective and better performance in the 09:00 hours than 13:00 hours or 17:00 hours.

Effect of structure configurations and wind characteristics on the design of solar concentrator support structure under dynamic wind action

  • Kaabia, Bassem;Langlois, Sebastien;Maheux, Sebastien
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.41-57
    • /
    • 2018
  • Concentrated Solar Photovoltaic (CPV) is a promising alternative to conventional solar structures. These solar tracking structures need to be optimized to be competitive against other types of energy production. In particular, the selection of the structural parameters needs to be optimized with regards to the dynamic wind response. This study aims to evaluate the effect of the main structural parameters, as selected in the preliminary design phase, on the wind response and then on the weight of the steel support structure. A parametric study has been performed where parameters influencing dynamic wind response are varied. The study is performed using a semi-deterministic time-domain wind analysis method. Unsteady aerodynamic model is applied for the shape of the CPV structure collector at different configurations in conjunction with a consistent mass-spring-damper model with the corresponding degrees of freedom to describe the dynamic response of the system. It is shown that, unlike the static response analysis, the variation of the peak wind response with many structural parameters is highly nonlinear because of the dynamic wind action. A steel structural optimization process reveals that close attention to structural and site wind parameters could lead to optimal design of CPV steel support structure.

Dynamic Characteristics of a Coupled Journal and Thrust Hydrodynamic Bearing in a HDD Spindle System Due to Groove Location (HDD 스핀들 시스템에 사용되는 저널과 트러스트가 결합된 유체 동압 베어링의 홈 위치에 따른 동특성 해석)

  • 윤진욱;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.304-311
    • /
    • 2001
  • This research numerically analyzes the dynamic characteristics of a coupled journal and thrust hydrodynamic bearing due to its groove location which has the static load due to the weight of a rotor in the axial direction and the dynamic load due to its mass unbalance in the radial direction. The Reynolds equation is transformed to solve a plain member rotating type of journal bearing(PMRJ), a grooved member rotating type of journal bearing (GMRJ), a plain member rotating type of thrust bearing (PMRT) and a grooved member rotating type of thrust bearing (GMRT). FEM is used to solve the Reynolds equations in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or floating height of a rotor, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. This research shows that the groove location affects the pressure distribution in the fluid film and consequently the dynamic performance of a HDD spindle system.

  • PDF

Structural Optimization of the Lower Parts in a Humanoid Considering Dynamic Characteristics (동적 특성을 고려한 휴머노이드 하체 부품의 구조최적설계)

  • Hong, Eul-Pyo;Lee, Il-Kwon;You, Bum-Jae;Kim, Chang-Hwan;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.882-889
    • /
    • 2008
  • A humanoid is a robot with its overall appearance based on that of the human body. When the humanoid moves or walks, dynamic forces act on the body structure. Although the humanoid keeps the balance by using a precise control, the dynamic forces generate unexpected deformation or vibration and cause difficulties on the control. Generally, the structure of the humanoid is designed by the designer's experience and intuition. Then the structure can be excessively heavy or fragile. A humanoid design scenario for a systematic design is proposed to reduce the weight of the structure while sufficient strength is kept. Lower parts of the humanoid are selected to apply the proposed design scenario. Multi-body dynamics is employed to calculate the external dynamic forces on the parts and structural optimization is carried out to design the lower parts. Because structural optimization using dynamic forces directly is fairly difficult, linear dynamic response structural optimization using equivalent static loads is utilized. Topology and shape optimizations are adopted for two steps of initial and detailed designs, respectively. Various commercial software systems are used for analysis and optimization. Improved designs are obtained and the design results are discussed.

Transformation of a Dynamic Load into an Equivalent Static Load and Shape Optimization of the Road Arm in Self-Propelled Howitzer (자주포 로드암 동하중의 상당 정하중으로의 변환 및 형상최적설계)

  • Choe, U-Seok;Gang, Sin-Cheon;Sin, Min-Jae;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3767-3781
    • /
    • 1996
  • Generally, dynamic loads are applied to real structures. Since the analysis with the dynamic load is extremely difficult, static loads are utilized by proper conversions of the dynamic loads. The dynamic loads are usually converted ot static loads by safety foactors of experiences. However, it may increase weight and decrease reliability. In this study, a method is proposed for the conversion process. An equivalent static load is calculated ot generate a same maximum displacement. The method is verified through numerical tests on a spring-mass systems of one and multi degrees-of freedom. It has been found that the duration time of the loads and the natural frequencies of the structures are critical in the conversion process. A road arem is a self-propelled howizer is selected for the application of the proposed method. The shape of the road arm is optimized under the converted static loads.

Kinematic Analysis and Dynamic Balancing Technique in a Link-Motion Mechanism (링크모션 메커니즘의 기구학적 분석 및 다이나믹 발란싱 테크닉)

  • Suh, Jin-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.498-502
    • /
    • 2004
  • In a link-motion mechanism, numerous links are interconnected and each link executes a constrained motion at a high speed. Due to the complicated constrained motions of the constituent links, dynamic unbalance forces and moments are generated and transmitted to the main frame. Therefore unwanted vibration is produced. This degrades productivity and precise work. Based on constrained multi-body dynamics, the kinematic analysis is carried out to enable design changes to be made. This will provide the fundamental information for significantly reducing dynamic unbalance forces and moments which are transmitted to the main frame. In this work, a link-motion punch press is selected as an example of a link-motion mechanism. To calculate the mass and inertia properties of every link comprising a link-motion punch press, 3-dimensional CAD software is utilized. The main issue in this work is to eliminate the first-order unbalance force and moment in a link-motion punch press. The mass, moment of inertia link length, location of the mass center in each link have a great impact on the degree of dynamic balancing which can be achieved maximally. Achieving good dynamic balancing in a link motion punch press is quite essential fur reliable operation at high speed.

  • PDF

Effect of Auditory Stimulus using White Nosie on Dynamic Balance in Patients with Chronic Stroke during Walking

  • Lim, Hee Sung;Ryu, Jiseon;Ryu, Sihyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.4
    • /
    • pp.301-309
    • /
    • 2020
  • Objective: This study aimed to investigate the effect of white noise on dynamic balance in patients with stroke during walking. Method: Nineteen patients with chronic stroke (age: 61.2±9.8 years, height: 164.4±7.4 cm, weight: 61.1±9.4 kg, paretic side (R/L): 11/8, duration: 11.6±4.9 years) were included as study participants. Auditory stimulus used white noise, and all participants listened for 40 minutes mixing six types of natural sounds with random sounds. The dynamic balancing ability was evaluated while all participants walked before and after listening to white noise. The variables were the center of pressure (CoP), the center of mass (CoM), CoP-CoM inclined angle. Results: There is a significant increase in the antero-posterior (A-P) CoP range, A-P inclination angle, and gait speed on the paretic and non-paretic sides following white noise intervention (p<.05). Conclusion: Our findings confirmed the positive effect of using white noise as auditory stimulus through a more objective and quantitative assessment using CoP-CoM inclination angle as an evaluation indicator for assessing dynamic balance in patients with chronic stroke. The A-P and M-L inclination angle can be employed as a useful indicator for evaluating other exercise programs and intervention methods for functional enhancement of patients with chronic stroke in terms of their effects on dynamic balance and effectiveness.

Dynamic Simulation of Proton Exchange Membrane Fuel Cell Stack under Various Operating Pattern of Fuel Cell Powered Heavy Duty Truck (연료전지 트럭의 운전 부하 패턴에 따른 고분자 연료전지 스택의 동특성 시뮬레이션 )

  • NAMIN SON;MUJAHID NASEEM;UIYEON KIM;YOUNG DUK LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.2
    • /
    • pp.121-128
    • /
    • 2024
  • In this study, a dynamic simulation model of a heavy-duty truck, equipped with a fuel cell power-train, has been developed and the dynamic behavior of the fuel cell stack has bee investigated using. Output change simulations were performed according to several drive cycle load change of a fuel cell truck. Mathworks' Simulink and Simscape program were used to develop the model. The model is comprised of fuel cell power train, power converter system and truck vehicle part. The vehicle runs at targeted speed of the truck, which is set as the load of the system. The dynamic behavior of the fuel cell stack according to the weight difference were analyzed, and based on this, the dynamic characteristics of the fuel cell output power and battery state with simple load was analyzed.