• Title/Summary/Keyword: dynamic viscosity

Search Result 325, Processing Time 0.021 seconds

Characteristics of Non-ionic Micellar and O/W Microemulsion Systems and Solubilization of Sudan IV (비이온성 미셀용액과 수중유형 마이크로에멀젼계의 특성 및 수단 IV의 가용화)

  • 지웅길;황성주;장은옥;현종목
    • YAKHAK HOEJI
    • /
    • v.39 no.5
    • /
    • pp.495-505
    • /
    • 1995
  • The O/W microemulsion systems were made from 2 or 4% (w/w) oil (soybean oil, olive oil or isopropyl myristate) and 10, 15 or 20% (w/w) Brij 96. They were compared with micellar solution of equivalent surfactant concentration m therms of physicochemical properties, and the solubilization of sudan IV. They were characterized by dynamic light scattering, stability, surface tension, viscosity and rheogram. The mean diameters of O/W microemulsion systems were 10-15nm, and those of Brij 96 micellar solutions were 18-19 nm. Both of them were monodisperse systems. The O/W microemulsion systems showed Newtonian flow and their apparent viscosities were lower than those of micellar solutions. The surface tensions of O/W microemulsion systems were increased or decreased depending on the types of oil used, when compared with those of micellar solutions. The O/W microemulsion systems were very stable, and did not show any flocculation or aggregation. Their mean diameters were not changed after three months. But oxidation was observed in microemulsions without nitrogen gas at high temperature. There was a significant improvement in the sudan IV solubffimtion in micromulsion compared with that m the micellar solution containing equivalent concentration of surfactant. The size distribution and mean diameters of O/W micromulsions were not changed when sudan IV was solubilized.

  • PDF

Analysis of the Dynamic Characteristics of a HDD Spindle System Supported by Asymmetrically Grooved Journal Bearings (비대칭 그루브 저널 베어링으로 지지되는 하드디스크 스핀들 시스템의 동특성 해석)

  • 이상훈;김학운;장건희;김철순
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.748-752
    • /
    • 2004
  • Fluid dynamic bearings (FDBs) have been replacing ball bearings of the HDD spindle motor very rapidly. But there are several demerits of HDB, such as high friction torque, variable viscosity of the fluid lubricant depending on operating temperature, low stiffness, and etc. Eccentricity is one of the major parameters which affects the static and dynamic characteristics. As the static eccentricity is larger, the stiffness and the damping coefficients become bigger. But friction torque is relatively unaffected by the static eccentricity. This research proposes a new type of journal bearing with asymmetric journal grooves which results in better dynamic characteristics. The static and dynamic characteristics of the new journal bearing are investigated by solving the Reynolds' equation with FEM, and the transient analysis is performed to predict the dynamic behavior of rotor by solving the equations of motion of a HDD spindle system with Runge-Kutta method. The result shows that the proposed Journal bearings have much bigger stiffness and damping coefficients compared with the conventional symmetric ones. And consequently, it has smaller whirl radius and tilting angle.

  • PDF

Dynamic analysis of ACTIVE MOUNT using viscoelastic-elastoplastic material model

  • Park, Taeyun;Jung, Wonuk
    • International Journal of Reliability and Applications
    • /
    • v.17 no.2
    • /
    • pp.137-147
    • /
    • 2016
  • The engine mount of a car subjected to a pre-load related to the weight of the engine, and acts to insulate the vibration coming from the engine by moving on large or small displacement depending on the driving condition of the car. The vibration insulation of the engine mount is an effect obtained by dissipating the mechanical energy into heat by the viscosity characteristic of the rubber and the microscopic behavior of the additive carbon black. Therefore, dynamic stiffness from the intrinsic properties of rubber filled with carbon black at the design stage is an important design consideration. In this paper, we introduced a hyper-elastic, visco-elastic and elasto-plastic model to predict the dynamic characteristics of rubber, and developed a fitting program to determine the material model parameters using MATLAB. The dynamic characteristics analysis of the rubber insulator of the ACTIVE MOUNT was carried out by using MSC.MARC nonlinear structural analysis software, which provides the dynamic characteristics material model. The analysis results were compared with the dynamic characteristics test results of the rubber insulator, which is one of the active mount components, and the analysis results were confirmed to be valid.

Effects of Irradiation of Electron Beam on the Rheological Properties of Poly(lactic acid) and Chemically Modified Poly(lactic acid) (전자선 조사가 Poly(lactic acid) 및 개질된 Poly(lactic acid)의 유변학적 특성에 미치는 영향)

  • Shin, Boo-Young;Kang, Kyoung-Su;Jo, Gyu-Soon;Han, Do-Hung;Song, Jeong-Sup;Lee, Sang-Il;Lee, Tae-Jin;Kim, Bong-Shik
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.269-272
    • /
    • 2007
  • In this study, we investigated the effects of electron beam irradiation on the rheological properties of PLA for enhancing processability. The electron beam was irradiated onto the pure PLA, chemically modified PLA by reactive extrusion, and PLA containing functional monomer. The complex viscosity and log G'vs. log G" plot among dynamic rheological properties were chosen for comparison. The complex viscosity of irradiated pure and chemically modified PLA decreased significantly due to de-gradation of PLA molecules with increasing the E-beam dosages. Complex viscosity of irradiated PLA with functional monomer showed maximum value at moderate dosage, while at high dosage the complex viscosity was decreased by a prolonged irradiation.

Rheological Properties of Citrus Pectin Solutions (감귤류 펙틴 용액의 리올리지 특성)

  • Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.799-806
    • /
    • 1995
  • The steady shear and small amplitude oscillatory dynamic rheological properties of citrus pectin $([\eta]=3.75\;dL/g)$ were characterized for a wide range of pectin concentrations $({\sim}6%)$. The typical power-law flow was observed above 2.0% concentration, and the shear rate dependence of viscosity increased with pectin concentration. The transition from dilute to concentrated regime, determined from the double logarithmic plot of ${\eta_{sp.o}}\;vs\;C[\eta]$, occurred at a critical coil overlap parameter $C^{*}[\eta]\approx4.0$, at which ${\eta_{sp.o}}$ corresponded to approximately 10.0. The slopes of ${\eta_{sp.o}}\;vs\;C[\eta]$, at $C[\eta]\;at\;C[\eta]C^{*}[\eta]$were 1.1 and 4.5, respectively. The steady viscosity $(\eta)$ displayed a good superposition at ${\eta}/{\eta}_o\;vs\;{\gamma}/{\gamma}_{0.8}$ relation with an exception of high concentration (6%), which arised from the significant deviation of flow behavior index (n values of $\eta_{a}=K\gamma^{n-1}$) at high concentration. Dynamic measurements showed that the loss modulus $(G^{\prime\prime})$ was much higher than the storage modulus $(G^\prime)$for all concentrations studied, indicating predominant viscoelastic liquid-like behavior of pectin solutions. The frequency dependence of $G^\prime$ was higher than that of $G^\prime\prime$ at the same concentration, whose trend was more pronounced with decreasing pectin concentration. The shear viscosity $(\eta)$ was almost identical to the complex viscosity $(\eta^{*})$ at low concentration, following the Cox-Merz rule, but they became increasingly different at high concentration.

  • PDF

Effect of Storage Temperature on Dynamic Rheological Properties of Hot Pepper-Soybean Pastes Mixed with Guar Gum and Xanthan Gum

  • Choi, Su-Jin;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.496-499
    • /
    • 2007
  • Dynamic rheological properties of hot pepper-soybean paste (HPSP) samples mixed with guar gum and xanthan gum were evaluated at different storage temperatures (5, 15, and $25^{\circ}C$) by using a dynamic rheometer. Magnitudes of storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) in the HPSP-gum mixtures increased with an increase in storage temperature from 5 to $25^{\circ}C$. After 3-month storage at 5 and $15^{\circ}C$ there were no significant changes in dynamic rheological properties. The increase in dynamic moduli (G', G", and ${\eta}^*$) with storage temperature is less pronounced at HPSP-xanthan gum mixtures in comparison to HPSP-guar gum mixtures. The slopes of G' (0.16-0.18) of HPSP-guar gum mixtures at 3-month storage were much higher than that (0.10) at 0-month storage, indicating that the elastic properties of the HPSP-guar gum mixtures can be decreased after 3-month storage. However, there were not much differences between the slopes of G' in HPSP-xathan gum mixtures. Xanthan gum was observed to be better structure stabilizer for HPSP during storage.

On Subgrid-Scale Models for Large-Fddy Simulation of Turbulent Flows (난류유동의 큰 에디 모사를 위한 아격자 모델)

  • Gang, Sang-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1523-1534
    • /
    • 2000
  • The performance of a number of existing dynamic subgrid-scale(SGS) models is evaluated in large-eddy simulations(LES) of two prototype transitional and turbulent shear flows, a planar jet and a channel flow. The dynamic SGS models applied include the dynamic Smagorinsky model(DSM);Germano et al. 1991, Lully 1992), the dynamic tow-component model(DTM; Akhavan et al. 2000), the dynamic mixed model(DMM;Zang et al, 1993). and the dynamic two-parameter model(DTPM; Salvetti & Banerjee 1995). The results are compared with those for DNS for their evaluation. The LES results demonstrate the superior performance of DTM with use of a sharp cutoff filter and DMM with use of a box filter, as compared to their respect counterpart DSM, in predicting the mean statistics, spectra and large-scale structure of the flow, Such features of DTM and DMM derive from the construction of the models in which tow separate terms are included to represent the SGS interactions; a Smagorinsky edd-viscosity term to account for the non-local interactions, and a local-interaction term to account for the nonlinear dynamics between the resolved and subgrid scales in the vicinity of the LES cutoff. As well, overall the SGS models using a sharp cutoff filter are more successful than those using a box filter in capturing the statistics and structure of the flow. Finally, DTPM is found to be compatible or inferior to DMM.

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

Rheology of hydrophobic-alkali-soluble-emulsions (HASE) and the effects of surfactants

  • Lau, A.K.M.;Tiu, C.;Kealy, T.;Tam, K.C.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Steady and dynamic shear properties of two hydrophobically modified alkali soluble emulsions (HASE), NPJI and NPJ2, were experimentally investigated. At the same polymer concentration, NPJ1 is appreciably more viscous and elastic than NPJ2. The high hydrophobicity of NPJ1 allows hydrophobic associations and more junction sites to be created, leading to the formation of a network structure. Under shear deformation, NPJ1 exhibits shear-thinning behaviour as compared with Newtonian characteristics of NPJ2. NPJ1 and NPJ2 exhibit a very high and a low level of elasticity respectively over the frequency range tested. For NPJ1, a crossover frequency appears, which is shifted to lower frequencies and hence, longer relaxation times, as concentration increases. Three different surfactants anionic SDS, cationic CTAB, and non-ionic TX-100 were employed to examine the effects of surfactants on the rheology of HASE. Due to the different ionic behaviour of the surfactant, each type of surfactant imposed different electrostatic interactions on the two HASE polymers. In general, at low surfactant concentration, a gradual increase in viscosity is observed until a maximum is reached, beyond which a continuous reduction of viscosity ensues. Viscosity development is a combined result of HASE-surfactant interactions, accompanied by constant rearrangement of the hydrophobic associative junctions, and electrostatic interactions.

Experimental and Theoretical Study on Shear Flow Behavior of Polypropylene/Layered Silicate Nanocomposites

  • Lee, Seung-Hwan;Youn, Jae-Ryoun
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.191-214
    • /
    • 2008
  • Polypropylene/layered silicate nanocomposites containing maleic anhydride grafted polypropylene were prepared by melt compounding and their rheological behavior was investigated in shear flow. Transient and steady shear flows were simulated numerically by using the K-BKZ integral constitutive equation along with experimentally determined damping functions under dynamic oscillatory and step strain shear flows. Nonlinear shear responses were predicted with the K-BKZ constitutive equation using two different damping functions such as the Wagner and PSM models. It was observed that PP-g-MAH compatibilized PP/layered silicate nanocomposites have stronger and earlier shear thinning and higher steady shear viscosity than pure PP resin or uncompatibilized nanocomposites at low shear rate regions. Strong damping behavior of the PP/layered silicate nanocomposite was predicted under large step shear strain and considered as a result of the strain-induced orientation of the organoclay in the shear flow. Steady shear viscosity of the pure PP and uncompatibilized nanocomposite predicted by the K-BKZ model was in good agreement with the experimental results at all shear rate regions. However, the model was inadequate to predict the steady shear viscosity of PP-g-MAH compatibilized nanocomposites quantitatively because the K-BKZ model overestimates strain-softening damping behavior for PP/layered silicate nanocomposites.