Browse > Article
http://dx.doi.org/10.1163/156855108X345225

Experimental and Theoretical Study on Shear Flow Behavior of Polypropylene/Layered Silicate Nanocomposites  

Lee, Seung-Hwan (Department of Materials Science and Engineering, Seoul National University)
Youn, Jae-Ryoun (Department of Materials Science and Engineering, Seoul National University)
Publication Information
Advanced Composite Materials / v.17, no.3, 2008 , pp. 191-214 More about this Journal
Abstract
Polypropylene/layered silicate nanocomposites containing maleic anhydride grafted polypropylene were prepared by melt compounding and their rheological behavior was investigated in shear flow. Transient and steady shear flows were simulated numerically by using the K-BKZ integral constitutive equation along with experimentally determined damping functions under dynamic oscillatory and step strain shear flows. Nonlinear shear responses were predicted with the K-BKZ constitutive equation using two different damping functions such as the Wagner and PSM models. It was observed that PP-g-MAH compatibilized PP/layered silicate nanocomposites have stronger and earlier shear thinning and higher steady shear viscosity than pure PP resin or uncompatibilized nanocomposites at low shear rate regions. Strong damping behavior of the PP/layered silicate nanocomposite was predicted under large step shear strain and considered as a result of the strain-induced orientation of the organoclay in the shear flow. Steady shear viscosity of the pure PP and uncompatibilized nanocomposite predicted by the K-BKZ model was in good agreement with the experimental results at all shear rate regions. However, the model was inadequate to predict the steady shear viscosity of PP-g-MAH compatibilized nanocomposites quantitatively because the K-BKZ model overestimates strain-softening damping behavior for PP/layered silicate nanocomposites.
Keywords
Nanocomposites; rheology; K-BKZ model; damping function; shear flow;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 D. G. Seong, T. J. Kang and J. R. Youn, Rheological characterization of polymer based nanocomposites with different nanoscale dispersions, e-Polymers 005, 1-14 (2005)
2 M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki and A. Okada, Preparation and mechanical properties of polypropylene-clay hybrid, Macromolecules 30, 6333-6338 (1997)   DOI   ScienceOn
3 Y. H. Hyun, S. T. Lim, H. J. Choi and M. S. Jhon, Rheology of poly(ethylene oxide)/organoclay nanocomposites, Macromolecules 34, 8084-8093 (2001)   DOI   ScienceOn
4 A. Lele, M. Mackley, G. Galgali and C. J. Ramesh, In situ rheo-x-ray investigation of flow-induced orientation in layered silicate-syndiotactic polypropylene nanocomposite melt, J. Rheol. 46, 1091-1110 (2002)   DOI   ScienceOn
5 A. S. Sarvestani and C. R. Picu, Network model for the viscoelastic behavior of polymer nanocomposites, Polymer 45, 7779-7790 (2004)   DOI   ScienceOn
6 A. S. Sarvestani and C. R. Picu, A frictional molecular model for the viscoelasticity of entangled polymer nanocomposites, Rheol. Acta. 45, 132-141 (2005)   DOI
7 F. Erchiqui, Thermodynamic approach of inflation process of K-BKZ polymer sheet with respect to thermoforming, Polym. Engng. Sci. 45, 1319-1335 (2005)   DOI   ScienceOn
8 J. Ren and R. Krishnamoorti, Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites, Macromolecules 36, 4443-4451 (2003)   DOI   ScienceOn
9 K. Osaki, On the damping function of shear relaxation modulus for entangled polymers, Rheol. Acta. 32, 429-437 (1993)   DOI
10 H. M. Laun, Description of the non-linear shear behaviour of a low density polyethylene melt by means of an experimentally determined strain dependent memory function, Rheol. Acta. 17, 1-15 (1978)   DOI
11 M. Iza and M. Bousmina, Damping function for narrow and large molecular weight polymers: comparison with the force-balanced network model, Rheol. Acta. 44, 372-378 (2005)   DOI
12 B. Bernstein, E. A. Kearsley and L. J. Zapas, A study of stress relaxation with finite strain, Trans. Soc. Rheol. 7, 391-410 (1963)   DOI
13 M. Sugimoto, Y. Masubuchi, J. Takimoto and K. Koyama, Melt rheology of polypropylene containing small amount of high molecular weight chain I. shear flow, J. Polym. Sci. Pol. Phys. 39, 2692-2704 (2001)   DOI   ScienceOn
14 R. Devendra, S. Hatzikiriakos and R. Vogel, Rheology of metallocene polyethylene-based nanocomposites: influence of graft modification, J. Rheol. 50, 415-434 (2006)   DOI   ScienceOn
15 J. M. Madiedo, J. M. Franco, V. Valencia and C. Gallegos, Modeling of the non-linear rheological behavior of a lubricating grease at low-shear rates, J. Tribol. 122, 590-596 (2000)   DOI   ScienceOn
16 M. H. Wagner, S. Kheirandish and O. Hassager, Quantitative prediction of transient and steadystate elongational viscosity of nearly monodisperse polystyrene melts, J. Rheol. 49, 1317-1327 (2005)   DOI   ScienceOn
17 S. K. Lee, D. G. Seong and J. R. Youn, Degradation and rheological properties of biodegradable nanocomposites prepared by melt intercalation method, Fiber. Polym. 6, 289-296 (2005)   과학기술학회마을   DOI
18 J. M. Maia, Theoretical modelling of fluid S1: a comparative study of constitutive models in sample and complex flows, J. Non-Newtonian Fluid Mech. 85, 107-125 (1999)   DOI   ScienceOn
19 M. T. Islam, M. T. J. Sanchez-Reyes and L. A. Archer, Nonlinear rheology of highly entangled polymer liquids: step shear damping function, J. Rheol. 45, 61-82 (2001)   DOI   ScienceOn
20 A. S. Sarvestani, X. He and E. Jabbari, Viscoelastic characterization and modeling of gelation kinetics of injectable in situ crosslinkable poly(lactide-ethylene oxide-fumarate) hydrogels, Biomacromolecules 8, 406-412 (2007)   DOI   ScienceOn
21 R. G. Larson, The Structure and Rheology of Complex Fluids. Oxford University Press, New York, USA (1999)
22 J. Kasehagen and C. W. Macosko, Nonlinear shear and extensional rheology of long-chain randomly branched polybutadiene, J. Rheol. 42, 1303-1327 (1998)   DOI
23 S. H. Lee, E. Cho and J. R. Youn, Rheological behavior of polypropylene/layered silicate nanocomposites prepared by melt compounding in shear and elongational flows, J. Appl. Polym. Sci. 103, 3506-3513 (2007)   DOI   ScienceOn
24 C. Valencia, M. C. Sanchez, A. Ciruelos, A. Latorre, J. M. Madiedo and C. Gallegos, Non-linear viscoelasticity modeling of tomato paste products, Food Res. Int. 36, 911-919 (2003)   DOI   ScienceOn
25 R. Krishnamoorti and K. Yurekli, Rheology of polymer layered silicate nanocomposites, Curr. Opin. Coll. Interf. Sci. 6, 464-470 (2001)   DOI   ScienceOn
26 S. S. Ray and M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28, 1539-1641 (2003)   DOI   ScienceOn
27 X. He, J. Yang, L. Zhu, B. Wang, G. Sun, P. Lv, I. Y. Phang and T. Liu, Morphology and melt rheology of nylon 11/clay nanocomposites, J. Appl. Polym. Sci. 102, 542-549 (2006)   DOI   ScienceOn
28 A. C. Papanastasiou, L. E. Scriven and C.W. Macosko, An integral constitutive equation for mixed flows: viscoelastic characterization, J. Rheol. 27, 387-410 (1983)   DOI   ScienceOn
29 G. Barakos, E. Mitsoulis, C. Tzoganakis and T. Kajiwara, Rheological characterization of controlled-rheology polypropylenes using integral constitutive equations, J. Appl. Polym. Sci. 59, 543-556 (1996)   DOI
30 M. H. Wagner and J. Meissner, Network disentanglement and time-dependent flow behaviour of polymer melts, Macromol. Chem. 181, 1533-1550 (1980)   DOI
31 C. F. Wang and J. L. Kokini, Simulation of the nonlinear rheological properties of gluten using the Wagner constitutive model, J. Rheol. 39, 1465-1482 (1995)   DOI   ScienceOn
32 J. D. Ferry, Viscoelastic Properties of Polymers. Wiley, New York, USA (1980)
33 M. Isaki, M. Takahashi and O. Urakawa, Biaxial damping function of entangled monodisperse polystyrene melts: comparison with theMead-Larson-Doi model, J. Rheol. 47, 1201-1210 (2003)   DOI   ScienceOn
34 R. I. Tanner, From A to (BK)Z in constitutive relations, J. Rheol. 32, 673-702 (1988)   DOI
35 M. H. Wagner, Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt, Rheol. Acta. 18, 33-50 (1979)   DOI
36 V. P. Toshchevikov, A. Blumen and Y. Y. Gotlib, Dynamics of polymer networks with strong differences in the viscose characteristics of their crosslinks and strand, Macromol. Theory Simul. 16, 359-377 (2007)   DOI   ScienceOn
37 J. Ren, A. S. Silva and R. Krishnamoorti, Linear viscoelasticity of disordered polystyrene polyisoprene block copolymer bases layered-silicate nanocomposites, Macromolecules 33, 3739-3746 (2000)   DOI   ScienceOn
38 R. Kotsilkova, Rheology-structure relationship of polymer/layered silicate hybrids, Mech. Time-Depend Mater. 6, 283-300 (2006)   DOI
39 A. D. Gotsis and B. L. F. Zeevenhoven, Effect of long branches on the rheology of polypropylene, J. Rheol. 48, 895-914 (2004)   DOI   ScienceOn
40 A. Nishioka, T. Takahashi, Y. Masubuchi, J. Takimoto and K. Koyama, Description of uniaxial, biaxial, and planar elongational viscosities of polystyrene melt by the K-BKZ model, J. Non-Newtonian Fluid Mech. 89, 287-301 (2000)   DOI   ScienceOn