DOI QR코드

DOI QR Code

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi (Seoul National University, Department of Energy System Engineering) ;
  • Eung Soo Kim (Seoul National University, Department of Energy System Engineering)
  • Received : 2023.03.09
  • Accepted : 2023.05.21
  • Published : 2023.09.25

Abstract

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

Keywords

Acknowledgement

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety(KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission(NSSC) of the Republic of Korea. (No. 2103079).

References

  1. J.W. Kim, T.S. You, E.S. Kim, S.J. Yoon, Smoothed particle hydrodynamics modeling and analysis of oxide reduction process for uranium oxides, Chem. Eng. Sci. (2022), 117974, https://doi.org/10.1016/j.ces.2022.117974. 
  2. Y.B. Jo, S.H. Park, J. Park, E.S. Kim, Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics, Nucl. Eng. Technol. 53 (3) (2021) 752-762, https://doi.org/10.1016/j.net.2020.07.039. 
  3. Y.B. Jo, S.H. Park, H.S. Yoo, E.S. Kim, GPU-Based SPH-DEM method to examine the three-phase hydrodynamic interactions between multiphase flow and solid particles, Int. J. Multiphas. Flow (2022), 104125, https://doi.org/10.1016/j.ijmultiphaseflow.2022.104125. 
  4. A. Hasanpour, D. Istrati, I. Buckle, Coupled SPH-FEM modeling of tsunami-borne large debris flow and impact on coastal structures, J. Mar. Sci. Eng. 9 (10) (2021) 1068, https://doi.org/10.3390/jmse9101068. 
  5. S.H. Park, Y.B. Jo, Y. Ahn, H.Y. Choi, T.S. Choi, S.S. Park, et al., Development of multi-GPU-based smoothed particle hydrodynamics code for nuclear thermal hydraulics and safety: potential and challenges, Front. Energy Res. 8 (2020) 86, https://doi.org/10.3389/fenrg.2020.00086. 
  6. J. Bonet, T.S. Lok, Variational and momentum preservation aspects of smooth particle hydrodynamic formulations, Comput. Methods Appl. Mech. Eng. 180 (1-2) (1999) 97-115, https://doi.org/10.1016/S0045-7825(99)00051-1. 
  7. R. Fatehi, M.T. Manzari, Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives, Comput. Math. Appl. 61 (2) (2011) 482-498, https://doi.org/10.1016/j.camwa.2010.11.028. 
  8. A. Skillen, S. Lind, P.K. Stansby, B.D. Rogers, Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalized Fickian smoothing applied to body-water slam and efficient wave-body interaction, Comput. Methods Appl. Mech. Eng. 265 (2013) 163-173, https://doi.org/10.1016/j.cma.2013.05.017. 
  9. S.J. Lind, R. Xu, P.K. Stansby, B.D. Rogers, Incompressible smoothed particle hydrodynamics for free-surface flows: a generalized diffusion-based algorithm for stability and validations for impulsive flows and propagating waves, J. Comput. Phys. 231 (4) (2012) 1499-1523, https://doi.org/10.1016/j.jcp.2011.10.027. 
  10. G. Oger, S. Marrone, D. Le Touze, M. De Leffe, SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms, J. Comput. Phys. 313 (2016) 76-98, https://doi.org/10.1016/j.jcp.2016.02.039. 
  11. D. Violeau, R. Issa, Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview, Int. J. Numer. Methods Fluid. 53 (2) (2007) 277-304, https://doi.org/10.1002/fld.1292. 
  12. T. Fonty, M. Ferrand, A. Leroy, D. Violeau, Air entrainment modeling in the SPH method: a two-phase mixture formulation with open boundaries, Flow, Turbul. Combust. 105 (4) (2020) 1149-1195.  https://doi.org/10.1007/s10494-020-00165-7
  13. D. Lopez, R. Marivela, L. Garrote, Smoothed particle hydrodynamics model applied to hydraulic structures: a hydraulic jump test case, J. Hydraul. Res. 48 (sup1) (2010) 142-158, https://doi.org/10.1080/00221686.2010.9641255. 
  14. J. Smagorinsky, General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev. 91 (3) (1963) 99-164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2. 
  15. M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluid. Fluid Dynam. 3 (7) (1991) 1760-1765, https://doi.org/10.1063/1.857955. 
  16. D. You, P. Moin, A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries, Phys. Fluids 19 (6) (2007), 065110, https://doi.org/10.1063/1.2739419. 
  17. D. You, P. Moin, A dynamic global-coefficient subgrid-scale model for large-eddy simulation of turbulent scalar transport in complex geometries, Phys. Fluids 21 (4) (2009), 045109, https://doi.org/10.1063/1.3115068. 
  18. D. Samantaray, M.K. Das, High Reynolds number incompressible turbulent flow inside a lid-driven cavity with multiple aspect ratios, Phys. Fluids 30 (7) (2018), 075107, https://doi.org/10.1063/1.5026662. 
  19. A.K. Prasad, J.R. Koseff, Reynolds number and end-wall effects on a lid-driven cavity flow, Phys. Fluid. Fluid Dynam. 1 (2) (1989) 208-218, https://doi.org/10.1063/1.857491. 
  20. R. Iwatsu, K. Ishii, T. Kawamura, K. Kuwahara, J.M. Hyun, Numerical simulation of three-dimensional flow structure in a driven cavity, Fluid Dynam. Res. 5 (3) (1989) 173. 
  21. T.P. Chiang, W.H. Sheu, R.R. Hwang, Effect of Reynolds number on the eddy structure in a lid-driven cavity, Int. J. Numer. Methods Fluid. 26 (5) (1998) 557-579, https://doi.org/10.1002/(SICI)1097-0363(19980315)26:5<557::AID-FLD638>3.0.CO;2-R. 
  22. E. Leriche, S. Gavrilakis, Direct numerical simulation of the flow in a lid-driven cubical cavity, Phys. Fluids 12 (6) (2000) 1363-1376, https://doi.org/10.1063/1.870387. 
  23. R. Bouffanais, M.O. Deville, E. Leriche, Large-eddy simulation of the flow in a lid-driven cubical cavity, Phys. Fluids 19 (5) (2007), 055108, https://doi.org/10.1063/1.2723153. 
  24. R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. Roy. Astron. Soc. 181 (3) (1977) 375-389, https://doi.org/10.1093/mnras/181.3.375. 
  25. J.J. Monaghan, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys. 30 (1992) 543-574.  https://doi.org/10.1146/annurev.aa.30.090192.002551
  26. W. Dehnen, H. Aly, Improving convergence in smoothed particle hydrodynamics simulations without pairing instability, Mon. Not. Roy. Astron. Soc. 425 (2) (2012) 1068-1082, https://doi.org/10.1111/j.1365-2966.2012.21439.x. 
  27. Y.B. Jo, S.H. Park, H.Y. Choi, H.W. Jung, Y.J. Kim, E.S. Kim, SOPHIA: development of Lagrangian-based CFD code for nuclear thermal-hydraulics and safety applications, Ann. Nucl. Energy 124 (2019) 132-149, https://doi.org/10.1016/j.anucene.2018.09.005. 
  28. S.B. Pope, S.B. Pope, Turbulent Flows, Cambridge University Press, 2000. 
  29. A. Di Mascio, M. Antuono, A. Colagrossi, S. Marrone, Smoothed particle hydrodynamics method from a large eddy simulation perspective, Phys. Fluids 29 (3) (2017), 035102. 
  30. Moncho Gomez-Gesteira, et al., SPHysics-development of a free-surface fluid solver-Part 1: theory and formulations, Comput. Geosci. 48 (2012) 289-299, https://doi.org/10.1016/j.cageo.2012.02.029. 
  31. X.Y. Hu, N.A. Adams, A multi-phase SPH method for macroscopic and mesoscopic flows, J. Comput. Phys. 213 (2) (2006) 844-861, https://doi.org/10.1016/j.jcp.2005.09.001. 
  32. Y. Kato, T. Tanahashi, Finite-element method for three-dimensional incompressible viscous flow using simultaneous relaxation of velocity and Bernoulli function: flow in a lid-driven cubic cavity at Re= 5000, JSME Int. J. Ser. 2, Fluids Eng., Heat Transfer, Power, Combust., Thermophys. Properties 35 (3) (1992) 346-353, https://doi.org/10.1299/jsmeb1988.35.3_346. 
  33. S. Qin, B. Krohn, J. Downing, V. Petrov, A. Manera, High-resolution velocity field measurements of turbulent round free jets in uniform environments, Nucl. Technol. 205 (1-2) (2019) 213-225, https://doi.org/10.1080/00295450.2018.1470864.