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Abstract: The engine mount of a car subjected to a pre-load related to the weight of the 
engine, and acts to insulate the vibration coming from the engine by moving on large or small 
displacement depending on the driving condition of the car. The vibration insulation of the 
engine mount is an effect obtained by dissipating the mechanical energy into heat by the 
viscosity characteristic of the rubber and the microscopic behavior of the additive carbon black. 
Therefore, dynamic stiffness from the intrinsic properties of rubber filled with carbon black at 
the design stage is an important design consideration. In this paper, we introduced a hyper-
elastic, visco-elastic and elasto-plastic model to predict the dynamic characteristics of rubber, 
and developed a fitting program to determine the material model parameters using MATLAB.  
The dynamic characteristics analysis of the rubber insulator of the ACTIVE MOUNT was 
carried out by using MSC.MARC nonlinear structural analysis software, which provides the 
dynamic characteristics material model. The analysis results were compared with the dynamic 
characteristics test results of the rubber insulator, which is one of the active mount components, 
and the analysis results were confirmed to be valid. 
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1. INTRODUCTION 
 
The engine mount of a car subjected to a pre-load related to the weight of the engine, and acts 
to insulate the vibration coming from the engine by moving on large or small displacement 
depending on the driving condition of the car. The vibration insulation of the engine mount is 
an effect obtained by dissipating the mechanical energy into heat by the viscosity characteristic 
of the rubber and the microscopic behavior of the additive carbon black. Therefore, dynamic 
stiffness from the intrinsic properties of rubber filled with carbon black at the design stage is 
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an important design consideration. In this paper, hyper-elastic, visco-elastic and elasto- plastic 
material models are introduced and the parameters of the material models are determined by 
fitting the test results. And the finite element analysis was performed using the determined 
material model parameters. The analysis results were compared with the dynamic 
characteristics test results of the rubber insulator, which is one of the active mount c 
omponents, and the analysis results were confirmed to be valid. 
 
 

2. Dynamic Characteristics of Carbon Black Filled Rubber 
 
The dynamic properties of carbon-black filled rubber are affected by factors such as frequency, 
excitation amplitude, preload, and temperature, and can be expressed by damping and 
dynamic stiffness coefficients. General natural rubber has a frequency dependency that tends 
to increase as the frequency increases. The stress-strain diagram in the condition of harmonics 
appears as an elliptical shape and can be expressed as a linear viscoelastic model. The carbon 
black filled rubber shows a tendency that the dynamic stiffness decreases as the amplitude of 
the vibration increases under the condition of harmonization by rearrangement and breaking of 
the carbon black structure. This tendency to decrease the dynamic stiffness is not affected by 
the frequency change, and the frequency dependency and the amplitude dependency are 
independent of each other. 
 
 

3. DYNAMIC CHARACTERISTIC MATERIAL MODEL 
 

The material characteristics model of the dynamic behavior is represented by the hyper- elastic 
model showing the large deformation behavior, the visco-elastic model showing the viscous 
properties of the rubber, and the elasto-plastic model showing the microscopic behavior of the 
carbon black. 
The hyper-elastic model used the Yeoh model, which is a representative strain energy density 
function. U 3 																																																													 1  

Equation (1) is the Yeoh model with fully uncompressed behavior, and I1 is the first strain 
invariant. As shown in Figure.1, the viscoelastic model is the generalized Maxwell model with 
one hyper-elastic model (E∞) and several set elements connected in series with spring (E) and 
dashpot (η) elements in parallel. 
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Figure 1. The generalized Maxwell model 
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The generalized Maxwell model can be expressed as the prony series in the form of a series as 
shown in equation (2). Equation (2) can be expressed as a complex form as shown in Equation 
(3) through Fourier transform. Where tr is the value of η / E. 
The elasto-plastic model was a multi-linear kinematic hardening model as shown in Figure 2. 
 

 
Figure 2. The multi-linear kinematic hardening model 

 
As shown in Figure 3, the dynamic characteristics material model of the carbon black 
filled rubber is shown in the form of the above three models in parallel in order to show 
frequency dependency and amplitude dependency. 
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Figure 3. The one-dimensional material model  combining visco-elasticity and elasto-

plasticity 
 
 

4. DEVELOPMENT OF FITTING PROGRAM 
 
To obtain the material parameters of the material model shown in Figure 3, a program was 
developed to minimize the error of between the test and the material model. The program was 
coded using the fmincon function, a multi-dimensional linear search algorithm function of 
Matlab (MathWorks Inc). Since there are many material parameters to be obtained, we used a 
method of setting the search range and approaching stepwise in order to find an appropriate 
solution. 
 

 
Figure 4. The dynamic characteristic material model fitting program 

 



 
 
 
 
 Taeyun Park, Wonuk Jung 141

5. DYNAMIC CHARACTERISTIC ANALYSIS 
 
There is an overlay method proposed by Olsson (2007) for the analysis of rubber dynamic 
characteristics using the finite element method. This method has the advantage that general 
commercial analysis software can be used without developing a finite element analysis code 
for a material model.  
However, the calculation is possible only in the time domain, and there is a disadvantage in 
that the computational time is long due to the large capacity of the model to be calculated 
because one hyperelastic-viscoelastic element is overlapped with M number of elastoplastic 
elements as many as the number of material parameters. 
Hartley (Hartley, 2012) complements the disadvantages of the Olsson’s method by suggesting 
a method of reducing the number of elasto-plastic finite element model from M to one. He 
applied a multi-linear kinematic hardening model to reduce the number of finite element 
model to one. Recently, MSC.MARC software has added a model that can consider the Payne 
effect in the frequency domain. This software provides a thixotropic model that can exhibit 
amplitude dependence by modifying the visco-elastic model, and a tribo-elastic model 
corresponding a multi-linear kinematic hardening model. This software also offers a 
combination of these two models. 
In this paper, we use the combination model of the above two models. The real part, or storage 
factor, of the complex coefficient of the thixotropic model in the complex plane is: , |∆ |̅ 1 2 |∆ |̅ 																																	 4  

Where g is the normalized shear modulus divided by the short-term shear modulus. Δε is the 
strain increment and dk is the material time parameter related the amplitude dependence.  
The loss factor, which is the imaginary part of the complex coefficient, is as follows. " , |∆ |̅ 1 2 |∆ |̅ 																																		 5  

If dk = 0 in the equations (4) and (5), it is the same as the generalized Maxwell model equation 
(3). 
 
 

6. DETERMINATION OF MATERIAL PARAMETERS 
 
The uniaxial tensile and biaxial tensile test data were used to fit the Yeoh model to determine 
model parameters. The test was carried out by Axel, a professional testing laboratory. The test 
data used for the fitting is a loading curve at five cycles after four cycles of preconditioning for 
a nominal strain of 100%. The extracted a loading curve was calibrated so that it could be 
started at the origin, taking into account increased the specimen gauge length due to 
preconditioning. 
The final fitting results are shown in Figure 5 and Table 1. 
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Figure 5. Results of fitting to test data for the Yeoh model 

 
 

Table 1. Parameters of the Yeoh model 

Parameter    

[MPa] 0.37166 -0.048026 0.007674 
 
 
A harmonic test was conducted to determine parameters of the dynamic characteristics 
material model. It was carried out under the conditions of 1% amplitude and 2% amplitude in 
the pre-strain 5% tensile state and 0.1 ~ 200Hz. 
Model fitting with test data was performed using the dynamic characteristic material model 
fitting program written in Matlab. The fitting results are shown in Figure 6 and Table 2. The 
fittings were fitted with an error value of 0.00645, and were graphically confirmed to have 
been fitted with a similar tendency. In Figure.6, the blue line is the test result and the red line 
shows the fitted material model.  
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Figure 6. Results of fitting with test data for the dynamic material model 

 
 

Table 2. Parameters of the dynamic material model 

N      error 

1 2.6083 0.1453 0.7901 0.2758 0.3043 0.00645 

2  0.2060 0.0861 1.1401 0.0065  

3  0.3691 0.0125    

4  0.7586 0.0016    
 
 

7. ACTIVE MOUNT TESTING AND ANALYSIS 
 
The insulator of ACTIVE MOUNT is made of the same rubber material as the specimen. 
The product test was carried out with a pre-load of 120 kgf and a frequency range of 0.5 to 100 
Hz with an excitation amplitude of 0.1, 0.2, 0.5 and 1 mm. The test machine is MTS-831 
shown in Figure7. The detailed conditions of the harmonic test are shown in Table 3. 
In the finite element analysis, first, static analysis was performed with preload 120kgf, then a 
frequency response analysis was performed by dividing the frequency into a frequency range 
of 0.5 to 100 Hz by 10 times for an amplitude of 0.1, 0.2, 0.5, and 1 mm. 
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As shown in Figure 8, only the rubber part was meshed as a tetrahedral element with an 
average size of 2 mm, and the inner aluminum core part was modeled as Rigid Body Element 
2 (RBE2). The analysis program used the MSC.MARC program. 
 
 

 
Figure 7. MTS-831 test machine 

 
 

Table.3 Conditions for steady state harmonic excitation test 

Amplitude Frequencies 

0.1mm 0.5, 10, 20, 40, 70, 100 Hz 
0.2mm 0.5, 10, 20, 40, 70, 100 Hz 
0.5mm 0.5, 10, 20, 40 Hz 
1.0mm 0.5, 10, 20, 40 Hz 

 

 
Figure 8. Finite element model 

8. ANALYSIS RESULTS 
 
The analysis results are shown as the storage  modulus and loss angle as shown in Figure 9. 
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