• Title/Summary/Keyword: dynamic update

Search Result 268, Processing Time 0.022 seconds

Analysis on Update Performance of XML Data by the Labeling Method (Labeling 방식에 따른 XML 데이터의 갱신 성능 분석)

  • Jung Min-Ok;Nam Dong-Sun;Han Jung-Yeob;Park Jong-Hyen;Kang Ji-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.106-108
    • /
    • 2005
  • XML is situating a standard fur data exchange in the Web. Most applications use database to manage XML documents of high-capacity efficiently. Therefore, most applications create label that expresses structure information of XML data and stores with information of XML document. A number of labeling schemes have been designed to label the element nodes such that the relationships between nodes can be easily determined by comparing their labels. With the increased popularity of XML data on the web, finding a labeling scheme that is able to support order-sensitive queries in the presence of dynamic updates becomes urgent. XML documents that most applications use have many properties as their application. So, in the thesis, we present the most efficient updating methods dependent on properties of XML documents in practical application by choosing a representative labeling method and applying these properties. The result of our test is based on XML data management system, so it expect not only used directly in practical application, but a standard to select the most proper methods for environment of application to develop a new exclusive XML database or use XML.

  • PDF

Selectivity Estimation Using Compressed Spatial Histogram (압축된 공간 히스토그램을 이용한 선택율 추정 기법)

  • Chi, Jeong-Hee;Lee, Jin-Yul;Kim, Sang-Ho;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.281-292
    • /
    • 2004
  • Selectivity estimation for spatial query is very important process used in finding the most efficient execution plan. Many works have been performed to estimate accurate selectivity. Although they deal with some problems such as false-count, multi-count, they can not get such effects in little memory space. Therefore, we propose a new technique called MW Histogram which is able to compress summary data and get reasonable results and has a flexible structure to react dynamic update. Our method is based on two techniques : (a) MinSkew partitioning algorithm which deal with skewed spatial datasets efficiently (b) Wavelet transformation which compression effect is proven. The experimental results showed that the MW Histogram which the buckets and wavelet coefficients ratio is 0.3 is lower relative error than MinSkew Histogram about 5%-20% queries, demonstrates that MW histogram gets a good selectivity in little memory.

Precise-Optimal Frame Length Based Collision Reduction Schemes for Frame Slotted Aloha RFID Systems

  • Dhakal, Sunil;Shin, Seokjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.165-182
    • /
    • 2014
  • An RFID systems employ efficient Anti-Collision Algorithms (ACAs) to enhance the performance in various applications. The EPC-Global G2 RFID system utilizes Frame Slotted Aloha (FSA) as its ACA. One of the common approaches used to maximize the system performance (tag identification efficiency) of FSA-based RFID systems involves finding the optimal value of the frame length relative to the contending population size of the RFID tags. Several analytical models for finding the optimal frame length have been developed; however, they are not perfectly optimized because they lack precise characterization for the timing details of the underlying ACA. In this paper, we investigate this promising direction by precisely characterizing the timing details of the EPC-Global G2 protocol and use it to derive a precise-optimal frame length model. The main objective of the model is to determine the optimal frame length value for the estimated number of tags that maximizes the performance of an RFID system. However, because precise estimation of the contending tags is difficult, we utilize a parametric-heuristic approach to maximize the system performance and propose two simple schemes based on the obtained optimal frame length-namely, Improved Dynamic-Frame Slotted Aloha (ID-FSA) and Exponential Random Partitioning-Frame Slotted Aloha (ERP-FSA). The ID-FSA scheme is based on the tag set estimation and frame size update mechanisms, whereas the ERP-FSA scheme adjusts the contending tag population in such a way that the applied frame size becomes optimal. The results of simulations conducted indicate that the ID-FSA scheme performs better than several well-known schemes in various conditions, while the ERP-FSA scheme performs well when the frame size is small.

An Efficient Revocable Group Signature Scheme in Vehicular Ad Hoc Networks

  • Zhao, Zhen;Chen, Jie;Zhang, Yueyu;Dang, Lanjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4250-4267
    • /
    • 2015
  • Although many revocable group signature schemes has been proposed in vehicular ad hoc networks (VANETs), the existing schemes suffer from long computation delay on revocation that they cannot adapt to the dynamic VANETs. Based on Chinese remainder theorem and Schnorr signature algorithm, this paper proposes an efficient revocable group signature scheme in VANETs. In the proposed scheme, it only need to update the corresponding group public key when a member quits the group, and in the meanwhile the key pairs of unchanged group members are not influenced. Furthermore, this scheme can achieve privacy protection by making use of blind certificates. Before joining to the VANETs, users register at local trusted agencies (LTAs) with their ID cards to obtain blind certificates. The blind certificate will be submitted to road-side units (RSUs) to verify the legality of users. Thus, the real identities of users can be protected. In addition, if there is a dispute, users can combine to submit open applications to RSUs against a disputed member. And LTAs can determine the real identity of the disputed member. Moreover, since the key pairs employed by a user are different in different groups, attackers are not able to track the movement of users with the obtained public keys in a group. Furthermore, performance analysis shows that proposed scheme has less computation cost than existing schemes.

ASSESSMENT OF CFD CODES USED IN NUCLEAR REACTOR SAFETY SIMULATIONS

  • Smith, Brian L.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.339-364
    • /
    • 2010
  • Following a joint OECD/NEA-IAEA-sponsored meeting to define the current role and future perspectives of the application of Computational Fluid Dynamics (CFD) to nuclear reactor safety problems, three Writing Groups were created, under the auspices of the NEA working group WGAMA, to produce state-of-the-art reports on different aspects of the subject. The work of the second group, WG2, was to document the existing assessment databases for CFD simulation in the context of Nuclear Reactor Safety (NRS) analysis, to gain a measure of the degree of quality and trust in CFD as a numerical analysis tool, and to take initiatives to extend the existing databases. The group worked over the period of 2003-2007 and produced a final state-of-the-art report. The present paper summarises the material gathered during the study, illustrating the points with a few highlights. A total of 22 safety issues were identified for which the application of CFD was considered to potentially bring real benefits in terms of better understanding and increased safety. A list of the existing databases was drawn up and synthesised, both from the nuclear area and from other parallel, non-nuclear, industrial activities. The gaps in the technology base were also identified and discussed. In order to initiate new ways of bringing experimentalists and numerical analysts together, an international workshop -- CFD4NRS (the first in a series) -- was organised, a new blind benchmark activity was set up based on turbulent mixing in T-junctions, and a Wiki-type web portal was created to offer online access to the material put together by the group giving the reader the opportunity to update and extend the contents to keep the information source topical and dynamic.

Avulsion injuries: an update on radiologic findings

  • Choi, Changwon;Lee, Sun Joo;Choo, Hye Jung;Lee, In Sook;Kim, Sung Kwan
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.4
    • /
    • pp.289-307
    • /
    • 2021
  • Avulsion injuries result from the application of a tensile force to a musculoskeletal unit or ligament. Although injuries tend to occur more commonly in skeletally immature populations due to the weakness of their apophysis, adults may also be subject to avulsion fractures, particularly those with osteoporotic bones. The most common sites of avulsion injuries in adolescents and children are apophyses of the pelvis and knee. In adults, avulsion injuries commonly occur within the tendon due to underlying degeneration or tendinosis. However, any location can be involved in avulsion injuries. Radiography is the first imaging modality to diagnose avulsion injury, although advanced imaging modalities are occasionally required to identify subtle lesions or to fully delineate the extent of the injury. Ultrasonography has a high spatial resolution with a dynamic assessment potential and allows the comparison of a bone avulsion with the opposite side. Computed tomography is more sensitive for depicting a tiny osseous fragment located adjacent to the expected attachment site of a ligament, tendon, or capsule. Moreover, magnetic resonance imaging is the best imaging modality for the evaluation of soft tissue abnormalities, especially the affected muscles, tendons, and ligaments. Acute avulsion injuries usually manifest as avulsed bone fragments. In contrast, chronic injuries can easily mimic other disease processes, such as infections or neoplasms. Therefore, recognizing the vulnerable sites and characteristic imaging features of avulsion fractures would be helpful in ensuring accurate diagnosis and appropriate patient management. To this end, familiarity with musculoskeletal anatomy and mechanism of injury is necessary.

Finite Element Model Updating of Structures Using Deep Neural Network (깊은 신경망을 이용한 구조물의 유한요소모델 업데이팅)

  • Gong, Ming;Park, Wonsuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.147-154
    • /
    • 2019
  • The finite element model updating can be defined as the problem of finding the parameters of the finite element model which gives the closest response to the actual response of the structure by measurement. In the previous researches, optimization based methods have been developed to minimize the error of the response of the actual structure and the analytical model. In this study, we propose an inverse eigenvalue problem that can directly obtain the parameters of the finite element model from the target mode information. Deep Neural Networks are constructed to solve the inverse eigenvalue problem quickly and accurately. As an application example of the developed method, the dynamic finite element model update of a suspension bridge is presented in which the deep neural network simulating the inverse eigenvalue function is utilized. The analysis results show that the proposed method can find the finite element model parameters corresponding to the target modes with very high accuracy.

Methodology for the efficiency of routing summary algorithms in discontiguous networks (Discontiguous Network에서 라우팅 축약 알고리즘의 효율화에 대한 방법론)

  • Hwang, Seong-kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1720-1725
    • /
    • 2019
  • In this paper, we consider the efficiency of the scheme for for routing summary algorithms in discontiguous networks. Router than updating and transmitting the entire subnet information in the routing protocol, only the shortened update information is sent and the routing table is shortened to make the router resources more efficient and improve network stability and performance. However, if a discontiguous network is formed in the network design process, a problem arises due to the network contraction function and does not bring about the result of fundamental router efficiency. Using different major networks subnets one major network, causing problems in communication and routing information exchange if the configuration is incorrect. The algorithm proposed in this paper removes only the auto-summary algorithm from the existing algorithm, which increases the complexity and stability of the routing table and reduces the CPU utilization of network equipment from 16.5% to 6.5% Confirmed.

Formal Semantics Based on Action Equation 2.0 for Python (작용식 2.0 기반 파이썬에 대한 형식 의미론)

  • Han, Jung Lan
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.6
    • /
    • pp.163-172
    • /
    • 2021
  • To specify a formal semantics for a programming language is to do a significant part for design, standardization and translation of it. The Python is popular and powerful, it is necessary to do research for a formal semantics to specify a static and dynamic semantics for Python clearly in order to design a similar language and do an efficient translation. This paper presents the Action Equation 2.0 that specifies a formal semantics for Python to change and update Action Equation. To measure the execution time for Python programs, we implemented the semantic structure specified in Action Equation 2.0 in Java, and prove through simulation that Action Equation 2.0 is a real semantic structure that can be implemented. The specified Action Equation 2.0 is compared to other descriptions, in terms of readability, modularity, extensibility, and flexibility and then we verified that Action Equation 2.0 is superior to other formal semantics.

Secure and Efficient Cooperative Spectrum Sensing Against Byzantine Attack for Interweave Cognitive Radio System

  • Wu, Jun;Chen, Ze;Bao, Jianrong;Gan, Jipeng;Chen, Zehao;Zhang, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3738-3760
    • /
    • 2022
  • Due to increasing spectrum demand for new wireless devices applications, cooperative spectrum sensing (CSS) paradigm is the most promising solution to alleviate the spectrum shortage problem. However, in the interweave cognitive radio (CR) system, the inherent nature of CSS opens a hole to Byzantine attack, thereby resulting in a significant drop of the CSS security and efficiency. In view of this, a weighted differential sequential single symbol (WD3S) algorithm based on MATLAB platform is developed to accurately identify malicious users (MUs) and benefit useful sensing information from their malicious reports in this paper. In order to achieve this, a dynamic Byzantine attack model is proposed to describe malicious behaviors for MUs in an interweave CR system. On the basis of this, a method of data transmission consistency verification is formulated to evaluate the global decision's correctness and update the trust value (TrV) of secondary users (SUs), thereby accurately identifying MUs. Then, we innovatively reuse malicious sensing information from MUs by the weight allocation scheme. In addition, considering a high spectrum usage of primary network, a sequential and differential reporting way based on a single symbol is also proposed in the process of the sensing information submission. Finally, under various Byzantine attack types, we provide in-depth simulations to demonstrate the efficiency and security of the proposed WD3S.