DOI QR코드

DOI QR Code

Avulsion injuries: an update on radiologic findings

  • Choi, Changwon (Department of Radiology, Inje University Busan Paik Hospital, Inje University College of Medicine) ;
  • Lee, Sun Joo (Department of Radiology, Inje University Busan Paik Hospital, Inje University College of Medicine) ;
  • Choo, Hye Jung (Department of Radiology, Inje University Busan Paik Hospital, Inje University College of Medicine) ;
  • Lee, In Sook (Department of Radiology, Pusan National University Hospital) ;
  • Kim, Sung Kwan (Department of Radiology, Busan Himchan Hospital)
  • Received : 2021.05.07
  • Accepted : 2021.06.22
  • Published : 2021.10.31

Abstract

Avulsion injuries result from the application of a tensile force to a musculoskeletal unit or ligament. Although injuries tend to occur more commonly in skeletally immature populations due to the weakness of their apophysis, adults may also be subject to avulsion fractures, particularly those with osteoporotic bones. The most common sites of avulsion injuries in adolescents and children are apophyses of the pelvis and knee. In adults, avulsion injuries commonly occur within the tendon due to underlying degeneration or tendinosis. However, any location can be involved in avulsion injuries. Radiography is the first imaging modality to diagnose avulsion injury, although advanced imaging modalities are occasionally required to identify subtle lesions or to fully delineate the extent of the injury. Ultrasonography has a high spatial resolution with a dynamic assessment potential and allows the comparison of a bone avulsion with the opposite side. Computed tomography is more sensitive for depicting a tiny osseous fragment located adjacent to the expected attachment site of a ligament, tendon, or capsule. Moreover, magnetic resonance imaging is the best imaging modality for the evaluation of soft tissue abnormalities, especially the affected muscles, tendons, and ligaments. Acute avulsion injuries usually manifest as avulsed bone fragments. In contrast, chronic injuries can easily mimic other disease processes, such as infections or neoplasms. Therefore, recognizing the vulnerable sites and characteristic imaging features of avulsion fractures would be helpful in ensuring accurate diagnosis and appropriate patient management. To this end, familiarity with musculoskeletal anatomy and mechanism of injury is necessary.

Keywords

Acknowledgement

This work was supported by the 2019 Inje University research grant.

References

  1. Stevens MA, El-Khoury GY, Kathol MH, Brandser EA, Chow S. Imaging features of avulsion injuries. Radiographics 1999;19:655-72. https://doi.org/10.1148/radiographics.19.3.g99ma05655
  2. Squires B, Allen PE, Livingstone J, Atkins RM. Fractures of the tuberosity of the calcaneus. J Bone Joint Surg Br 2001;83:55-61. https://doi.org/10.1302/0301-620X.83B1.0830055
  3. Sanders TG, Zlatkin MB. Avulsion injuries of the pelvis. Semin Musculoskelet Radiol 2008;12:42-53. https://doi.org/10.1055/s-2008-1067936
  4. Vandervliet EJ, Vanhoenacker FM, Snoeckx A, Gielen JL, Van Dyck P, Parizel PM. Sports-related acute and chronic avulsion injuries in children and adolescents with special emphasis on tennis. Br J Sports Med 2007;41:827-31. https://doi.org/10.1136/bjsm.2007.036921
  5. Lazovic D, Wegner U, Peters G, Gosse F. Ultrasound for diagnosis of apophyseal injuries. Knee Surg Sports Traumatol Arthrosc 1996;3:234-7. https://doi.org/10.1007/BF01466625
  6. Fernbach SK, Wilkinson RH. Avulsion injuries of the pelvis and proximal femur. Am J Roentgenol 1981;137:581-4. https://doi.org/10.2214/ajr.137.3.581
  7. Orava S, Ala-Ketola L. Avulsion fractures in athletes. Br J Sports Med 1977;11:65-71. https://doi.org/10.1136/bjsm.11.2.65
  8. Metzmaker JN, Pappas AM. Avulsion fractures of the pelvis. Am J Sports Med 1985;13:349-58. https://doi.org/10.1177/036354658501300510
  9. Rossi F, Dragoni S. Acute avulsion fractures of the pelvis in adolescent competitive athletes: prevalence, location and sports distribution of 203 cases collected. Skeletal Radiol 2001;30:127-31. https://doi.org/10.1007/s002560000319
  10. Abebe ES, Moorman CT, Garrett WE. Proximal hamstring avulsion injuries: injury mechanism, diagnosis and disease course. Oper Tech Sports Med 2012;20:2-6. https://doi.org/10.1053/j.otsm.2012.03.001
  11. Wood DG, Packham I, Trikha SP, Linklater J. Avulsion of the proximal hamstring origin. J Bone Joint Surg Am 2008;90:2365-74. https://doi.org/10.2106/JBJS.G.00685
  12. Brandser EA, el-Khoury GY, Kathol MH, Callaghan JJ, Tearse DS. Hamstring injuries: radiographic, conventional tomographic, CT, and MR imaging characteristics. Radiology 1995;197:257-62. https://doi.org/10.1148/radiology.197.1.7568833
  13. Ferlic PW, Sadoghi P, Singer G, Kraus T, Eberl R. Treatment for ischial tuberosity avulsion fractures in adolescent athletes. Knee Surg Sports Traumatol Arthrosc 2014;22:893-7. https://doi.org/10.1007/s00167-013-2570-4
  14. Schiller J, DeFroda S, Blood T. Lower extremity avulsion fractures in the pediatric and adolescent athlete. J Am Acad Orthop Surg 2017;25:251-9. https://doi.org/10.5435/JAAOS-D-15-00328
  15. Singer G, Eberl R, Wegmann H, Marterer R, Kraus T, Sorantin E. Diagnosis and treatment of apophyseal injuries of the pelvis in adolescents. Semin Musculoskelet Radiol 2014;18:498-504. https://doi.org/10.1055/s-0034-1389267
  16. Saluan PM, Weiker GG. Avulsion of the anterior inferior iliac spine. Orthopedics 1997;20:558-9. https://doi.org/10.3928/0147-7447-19970601-14
  17. Ouellette H, Thomas BJ, Nelson E, Torriani M. MR imaging of rectus femoris origin injuries. Skeletal Radiol 2006;35:665-72. https://doi.org/10.1007/s00256-006-0162-9
  18. Rajasekhar C, Kumar KS, Bhamra MS. Avulsion fractures of the anterior inferior iliac spine: the case for surgical intervention. Int Orthop 2001;24:364-5. https://doi.org/10.1007/s002640000184
  19. Hebert KJ, Laor T, Divine JG, Emery KH, Wall EJ. MRI appearance of chronic stress injury of the iliac crest apophysis in adolescent athletes. Am J Roentgenol 2008;190:1487-91. https://doi.org/10.2214/AJR.07.3399
  20. Steerman JG, Reeder MT, Udermann BE, Pettitt RW, Murray SR. Avulsion fracture of the iliac crest apophysis in a collegiate wrestler. Clin J Sport Med 2008;18:102-3. https://doi.org/10.1097/JSM.0b013e31815ad14f
  21. Schlegel TF, Bushnell BD, Godfrey J, Boublik M. Success of nonoperative management of adductor longus tendon ruptures in National Football League athletes. Am J Sports Med 2009;37:1394-9. https://doi.org/10.1177/0363546509332501
  22. Ueblacker P, English B, Mueller-Wohlfahrt HW. Nonoperative treatment and return to play after complete proximal adductor avulsion in high-performance athletes. Knee Surg Sports Traumatol Arthrosc 2016;24:3927-33. https://doi.org/10.1007/s00167-015-3669-6
  23. O'Rourke MR, Weinstein SL. Osteonecrosis following isolated avulsion fracture of the greater trochanter in children. A report of two cases. J Bone Joint Surg Am 2003;85:2000-5. https://doi.org/10.2106/00004623-200310000-00022
  24. James SL, Davies AM. Atraumatic avulsion of the lesser trochanter as an indicator of tumour infiltration. Eur Radiol 2006;16:512-4. https://doi.org/10.1007/s00330-005-2675-3
  25. Theologis TN, Epps H, Latz K, Cole WG. Isolated fractures of the lesser trochanter in children. Injury 1997;28:363-4. https://doi.org/10.1016/S0020-1383(97)00017-X
  26. Freitas A, Macedo SL Sr. Apophyseal fracture or avulsion of the greater trochanter. Acta Ortop Bras 2016;24:164-6. https://doi.org/10.1590/1413-785220162403155803
  27. Weaver JS, Jacobson JA, Jamadar DA, Hayes CW. Sonographic findings of adductor insertion avulsion syndrome with magnetic resonance imaging correlation. J Ultrasound Med 2003;22:403-7. https://doi.org/10.7863/jum.2003.22.4.403
  28. Anderson MW, Kaplan PA, Dussault RG. Adductor insertion avulsion syndrome (thigh splints): spectrum of MR imaging features. Am J Roentgenol 2001;177:673-5. https://doi.org/10.2214/ajr.177.3.1770673
  29. Tshering-Vogel D, Waldherr C, Schindera ST, Steinbach LS, Stauffer E, Anderson SE. Adductor insertion avulsion syndrome, "thigh splints": relevance of radiological follow-up. Skeletal Radiol 2005;34:355-8. https://doi.org/10.1007/s00256-004-0864-9
  30. Gottsegen CJ, Eyer BA, White EA, Learch TJ, Forrester D. Avulsion fractures of the knee: imaging findings and clinical significance. Radiographics 2008;28:1755-70. https://doi.org/10.1148/rg.286085503
  31. Hayes CW, Brigido MK, Jamadar DA, Propeck T. Mechanism-based pattern approach to classification of complex injuries of the knee depicted at MR imaging. Radiographics 2000;20 Spec No:S121-34. https://doi.org/10.1148/radiographics.20.suppl_1.g00oc21s121
  32. Weber WN, Neumann CH, Barakos JA, Petersen SA, Steinbach LS, Genant HK. Lateral tibial rim (Segond) fractures: MR imaging characteristics. Radiology 1991;180:731-4. https://doi.org/10.1148/radiology.180.3.1871286
  33. Haims AH, Medvecky MJ, Pavlovich R Jr, Katz LD. MR imaging of the anatomy of and injuries to the lateral and posterolateral aspects of the knee. Am J Roentgenol 2003;180:647-53. https://doi.org/10.2214/ajr.180.3.1800647
  34. Campos JC, Chung CB, Lektrakul N, Pedowitz R, Trudell D, Yu J, et al. Pathogenesis of the Segond fracture: anatomic and MR imaging evidence of an iliotibial tract or anterior oblique band avulsion. Radiology 2001;219:381-6. https://doi.org/10.1148/radiology.219.2.r01ma23381
  35. Terry GC, Hughston JC, Norwood LA. The anatomy of the iliopatellar band and iliotibial tract. Am J Sports Med 1986;14:39-45. https://doi.org/10.1177/036354658601400108
  36. Porrino J Jr, Maloney E, Richardson M, Mulcahy H, Ha A, Chew FS. The anterolateral ligament of the knee: MRI appearance, association with the Segond fracture, and historical perspective. Am J Roentgenol 2015;204:367-73. https://doi.org/10.2214/ajr.14.12693
  37. De Maeseneer M, Boulet C, Willekens I, Lenchik L, De Mey J, Cattrysse E, et al. Segond fracture: involvement of the iliotibial band, anterolateral ligament, and anterior arm of the biceps femoris in knee trauma. Skeletal Radiol 2015;44:413-21. https://doi.org/10.1007/s00256-014-2044-x
  38. Stallenberg B, Gevenois PA, Sintzoff SA Jr, Matos C, Andrianne Y, Struyven J. Fracture of the posterior aspect of the lateral tibial plateau: radiographic sign of anterior cruciate ligament tear. Radiology 1993;187:821-5. https://doi.org/10.1148/radiology.187.3.8497638
  39. Ringenberg J, Sealy D, Tiller R. Isolated Segond fracture in a pediatric patient. Phys Sportsmed 2015;43:188-91. https://doi.org/10.1080/00913847.2015.1037229
  40. Hall FM, Hochman MG. Medial Segond-type fracture: cortical avulsion off the medial tibial plateau associated with tears of the posterior cruciate ligament and medial meniscus. Skeletal Radiol 1997;26:553-5. https://doi.org/10.1007/s002560050285
  41. Remer EM, Fitzgerald SW, Friedman H, Rogers LF, Hendrix RW, Schafer MF. Anterior cruciate ligament injury: MR imaging diagnosis and patterns of injury. Radiographics 1992;12:901-15. https://doi.org/10.1148/radiographics.12.5.1529133
  42. Capps GW, Hayes CW. Easily missed injuries around the knee. Radiographics 1994;14:1191-210. https://doi.org/10.1148/radiographics.14.6.7855335
  43. Delzell PB, Schils JP, Recht MP. Subtle fractures about the knee: innocuous-appearing yet indicative of significant internal derangement. Am J Roentgenol 1996;167:699-703. https://doi.org/10.2214/ajr.167.3.8751684
  44. Kendall NS, Hsu SY, Chan KM. Fracture of the tibial spine in adults and children. A review of 31 cases. J Bone Joint Surg Br 1992;74:848-52. https://doi.org/10.1302/0301-620X.74B6.1447245
  45. Recondo JA, Salvador E, Villanua JA, Barrera MC, Gervas C, Alustiza JM. Lateral stabilizing structures of the knee: functional anatomy and injuries assessed with MR imaging. Radiographics 2000;20 Spec No:S91-102. https://doi.org/10.1148/radiographics.20.suppl_1.g00oc02s91
  46. Huang GS, Yu JS, Munshi M, Chan WP, Lee CH, Chen CY, et al. Avulsion fracture of the head of the fibula (the "arcuate" sign): MR imaging findings predictive of injuries to the posterolateral ligaments and posterior cruciate ligament. Am J Roentgenol 2003;180:381-7. https://doi.org/10.2214/ajr.180.2.1800381
  47. Lee J, Papakonstantinou O, Brookenthal KR, Trudell D, Resnick DL. Arcuate sign of posterolateral knee injuries: anatomic, radiographic, and MR imaging data related to patterns of injury. Skeletal Radiol 2003;32:619-27. https://doi.org/10.1007/s00256-003-0679-0
  48. Flato R, Passanante GJ, Skalski MR, Patel DB, White EA, Matcuk GR Jr. The iliotibial tract: imaging, anatomy, injuries, and other pathology. Skeletal Radiol 2017;46:605-22. https://doi.org/10.1007/s00256-017-2604-y
  49. Bates DG, Hresko MT, Jaramillo D. Patellar sleeve fracture: demonstration with MR imaging. Radiology 1994;193:825-7. https://doi.org/10.1148/radiology.193.3.7972832
  50. Hunt DM, Somashekar N. A review of sleeve fractures of the patella in children. Knee 2005;12:3-7. https://doi.org/10.1016/j.knee.2004.08.002
  51. Dupuis CS, Westra SJ, Makris J, Wallace EC. Injuries and conditions of the extensor mechanism of the pediatric knee. Radiographics 2009;29:877-86. https://doi.org/10.1148/rg.293085163
  52. Jalgaonkar AA, Dachepalli S, Al-Wattar Z, Rao S, Kochhar T. Atypical tibial tuberosity fracture in an adolescent. Orthopedics 2011;34:215.
  53. Rosenberg ZS, Kawelblum M, Cheung YY, Beltran J, Lehman WB, Grant AD. Osgood-Schlatter lesion: fracture or tendinitis? Scintigraphic, CT, and MR imaging features. Radiology 1992;185:853-8. https://doi.org/10.1148/radiology.185.3.1438775
  54. Yablon CM, Pai D, Dong Q, Jacobson JA. Magnetic resonance imaging of the extensor mechanism. Magn Reson Imaging Clin N Am 2014;22:601-20. https://doi.org/10.1016/j.mric.2014.07.004
  55. Hirano A, Fukubayashi T, Ishii T, Ochiai N. Magnetic resonance imaging of Osgood-Schlatter disease: the course of the disease. Skeletal Radiol 2002;31:334-42. https://doi.org/10.1007/s00256-002-0486-z
  56. Ekrol I, Court-Brown CM. Fractures of the base of the 5th metatarsal. Foot 2004;14:96-8. https://doi.org/10.1016/j.foot.2003.12.007
  57. Gu YD, Ren XJ, Li JS, Lake MJ, Zhang QY, Zeng YJ. Computer simulation of stress distribution in the metatarsals at different inversion landing angles using the finite element method. Int Orthop 2010;34:669-76. https://doi.org/10.1007/s00264-009-0856-4
  58. Theodorou DJ, Theodorou SJ, Kakitsubata Y, Botte MJ, Resnick D. Fractures of proximal portion of fifth metatarsal bone: anatomic and imaging evidence of a pathogenesis of avulsion of the plantar aponeurosis and the short peroneal muscle tendon. Radiology 2003;226:857-65. https://doi.org/10.1148/radiol.2263020284
  59. Polzer H, Polzer S, Mutschler W, Prall WC. Acute fractures to the proximal fifth metatarsal bone: development of classification and treatment recommendations based on the current evidence. Injury 2012;43:1626-32. https://doi.org/10.1016/j.injury.2012.03.010
  60. Chuckpaiwong B, Queen RM, Easley ME, Nunley JA. Distinguishing Jones and proximal diaphyseal fractures of the fifth metatarsal. Clin Orthop Relat Res 2008;466:1966-70. https://doi.org/10.1007/s11999-008-0222-7
  61. Kathol MH, el-Khoury GY, Moore TE, Marsh JL. Calcaneal insufficiency avulsion fractures in patients with diabetes mellitus. Radiology 1991;180:725-9. https://doi.org/10.1148/radiology.180.3.1871285
  62. Lee SM, Huh SW, Chung JW, Kim DW, Kim YJ, Rhee SK. Avulsion fracture of the calcaneal tuberosity: classification and its characteristics. Clin Orthop Surg 2012;4:134-8. https://doi.org/10.4055/cios.2012.4.2.134
  63. Yu SM, Yu JS. Calcaneal avulsion fractures: an often forgotten diagnosis. Am J Roentgenol 2015;205:1061-7. https://doi.org/10.2214/ajr.14.14190
  64. Frame TS. Rockwood & Green's fractures in adults. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 2023.
  65. Davis WH, Sobel M, Deland J, Bohne WH, Patel MB. The superior peroneal retinaculum: an anatomic study. Foot Ankle Int 1994;15:271-5. https://doi.org/10.1177/107110079401500507
  66. Rosenberg ZS, Bencardino J, Astion D, Schweitzer ME, Rokito A, Sheskier S. MRI features of chronic injuries of the superior peroneal retinaculum. Am J Roentgenol 2003;181:1551-7. https://doi.org/10.2214/ajr.181.6.1811551
  67. Bahrs C, Lingenfelter E, Fischer F, Walters EM, Schnabel M. Mechanism of injury and morphology of the greater tuberosity fracture. J Shoulder Elbow Surg 2006;15:140-7. https://doi.org/10.1016/j.jse.2005.07.004
  68. Green A, Izzi J Jr. Isolated fractures of the greater tuberosity of the proximal humerus. J Shoulder Elbow Surg 2003;12:641-9. https://doi.org/10.1016/S1058-2746(02)86811-2
  69. Pace A, Ribbans W, Kim JH. Isolated lesser tuberosity fracture of the humerus. Orthopedics 2008;31:94. https://doi.org/10.3928/01477447-20080101-32
  70. Earwaker J. Isolated avulsion fracture of the lesser tuberosity of the humerus. Skeletal Radiol 1990;19:121-5. https://doi.org/10.1007/BF00197619
  71. van Laarhoven HA, te Slaa RL, van Laarhoven EW. Isolated avulsion fracture of the lesser tuberosity of the humerus. J Trauma 1995;39:997-9. https://doi.org/10.1097/00005373-199511000-00031
  72. Levine B, Pereira D, Rosen J. Avulsion fractures of the lesser tuberosity of the humerus in adolescents: review of the literature and case report. J Orthop Trauma 2005;19:349-52. https://doi.org/10.1097/00005131-200505000-00010
  73. Wenzke DR. MR imaging of the elbow in the injured athlete. Radiol Clin North Am 2013;51:195-213. https://doi.org/10.1016/j.rcl.2012.09.013
  74. Iyer RS, Thapa MM, Khanna PC, Chew FS. Pediatric bone imaging: imaging elbow trauma in children: a review of acute and chronic injuries. Am J Roentgenol 2012;198:1053-68. https://doi.org/10.2214/ajr.10.7314
  75. Crowther M. Elbow pain in pediatrics. Curr Rev Musculoskelet Med 2009;2:83-7. https://doi.org/10.1007/s12178-009-9049-4
  76. Rajasekhar C, Kakarlapudi TK, Bhamra MS. Avulsion of the triceps tendon. Emerg Med J 2002;19:271-2. https://doi.org/10.1136/emj.19.3.271
  77. Newman SD, Mauffrey C, Krikler S. Olecranon fractures. Injury 2009;40:575-81. https://doi.org/10.1016/j.injury.2008.12.013
  78. Delgado J, Jaramillo D, Chauvin NA. Imaging the injured pediatric athlete: upper extremity. Radiographics 2016;36:1672-87. https://doi.org/10.1148/rg.2016160036
  79. Woods GW, Tullos HS. Elbow instability and medial epicondyle fractures. Am J Sports Med 1977;5:23-30. https://doi.org/10.1177/036354657700500105
  80. Kobayashi Y, Oka Y, Ikeda M, Munesada S. Avulsion fracture of the medial and lateral epicondyles of the humerus. J Shoulder Elbow Surg 2000;9:59-64. https://doi.org/10.1016/S1058-2746(00)90010-7
  81. Dodds SD, Flanagin BA, Bohl DD, DeLuca PA, Smith BG. Incarcerated medial epicondyle fracture following pediatric elbow dislocation: 11 cases. J Hand Surg Am 2014;39:1739-45. https://doi.org/10.1016/j.jhsa.2014.06.012
  82. Kang R, Stern PJ. Fracture dislocations of the proximal interphalangeal joint. J Am Soc Surg Hand 2002;2:47-59. https://doi.org/10.1053/jssh.2002.33317
  83. Freiberg A, Pollard BA, Macdonald MR, Duncan MJ. Management of proximal interphalangeal joint injuries. J Trauma 1999;46:523-8. https://doi.org/10.1097/00005373-199903000-00033
  84. Ritting AW, Baldwin PC, Rodner CM. Ulnar collateral ligament injury of the thumb metacarpophalangeal joint. Clin J Sport Med 2010;20:106-12. https://doi.org/10.1097/JSM.0b013e3181d23710
  85. Simpson D, McQueen MM, Kumar P. Mallet deformity in sport. J Hand Surg Br 2001;26:32-3. https://doi.org/10.1054/jhsb.2000.0484
  86. Aronowitz ER, Leddy JP. Closed tendon injuries of the hand and wrist in athletes. Clin Sports Med 1998;17:449-67. https://doi.org/10.1016/s0278-5919(05)70096-x
  87. Blair WF, Steyers CM. Extensor tendon injuries. Orthop Clin North Am 1992;23:141-8. https://doi.org/10.1016/S0030-5898(20)31721-1
  88. Cheung JP, Fung B, Ip WY. Review on mallet finger treatment. Hand Surg 2012;17:439-47. https://doi.org/10.1142/s0218810412300033