• 제목/요약/키워드: dynamic substructure technique

검색결과 28건 처리시간 0.025초

An efficient modeling technique for floor vibration in multi-story buildings

  • Lee, Dong-Guen;Ahn, Sang-Kyoung;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.603-619
    • /
    • 2000
  • Analysis of a framed structure for vertical vibration requires a lot of computational efforts because large number of degrees of freedom are generally involved in the dynamic responses. This paper presents an efficient modeling technique for vertical vibration utilizing substructuring technique and super elements. To simplify the modeling procedure each floor in a structure is modeled as a substructure. Only the vertical translational degrees of freedom are selected as master degrees of freedom in the inside of each substructure. At the substructure-column interface, horizontal and rotational degrees of freedom are also included considering the compatibility condition of slabs and columns. For further simplification, the repeated parts in a substructure are modeled as super elements, which reduces computation time required for the construction of system matrices in a substructure. Finally, the Guyan reduction technique is applied to enhance the efficiency of dynamic analysis. In numerical examples, the efficiency and accuracy of the proposed method are demonstrated by comparing the response time histories and the analysis time.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Comparisons of Elasto-Fiber and Fiber & Bernoulli-Euler reinforced concrete beam-column elements

  • Karaton, Muhammet
    • Structural Engineering and Mechanics
    • /
    • 제51권1호
    • /
    • pp.89-110
    • /
    • 2014
  • In this study, two beam-column elements based on the Elasto-Fiber element theory for reinforced concrete (RC) element have been developed and compared with each other. The first element is based on Elasto Fiber Approach (EFA) was initially developed for steel structures and this theory was applied for RC element in there and the second element is called as Fiber & Bernoulli-Euler element approach (FBEA). In this element, Cubic Hermitian polynomials are used for obtaining stiffness matrix. The beams or columns element in both approaches are divided into a sub-element called the segment for obtaining element stiffness matrix. The internal freedoms of this segment are dynamically condensed to the external freedoms at the ends of the element by using a dynamic substructure technique. Thus, nonlinear dynamic analysis of high RC building can be obtained within short times. In addition to, external loads of the segment are assumed to be distributed along to element. Therefore, damages can be taken account of along to element and redistributions of the loading for solutions. Bossak-${\alpha}$ integration with predicted-corrected method is used for the nonlinear seismic analysis of RC frames. For numerical application, seismic damage analyses for a 4-story frame and an 8-story RC frame with soft-story are obtained to comparisons of RC element according to both approaches. Damages evaluation and propagation in the frame elements are studied and response quantities from obtained both approaches are investigated in the detail.

Ritz-Lanczos알고리즘을 이용한 Component mode Method에 의한 구조물의 동적 해석 (Dynamic Analysis of Structures by Component Mode Method using Ritz-Lanczos Algorithm)

  • 심재수
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.151-158
    • /
    • 1997
  • The main concern of numerical dynamic analysis of large structures is to find an acceptable solution with fewer mode shapes and less computational efforts. component mode method utilizes substructure technique to reduce the degrss of freedom but have a disadvantage to not consider the dynamic characteristics of loads. Ritz Vector method consider the load characteristics but requires many integrations and errors are accumulated. In this study, to prove the effectiveness of component mode method, Lanczos algorithm are introduced. To prove the effectiveness of this method, example structures areanalyzed and the results are compared with SAP90.

  • PDF

부분구조법을 이용한 부분핵연료 집합체의 수중 자유진동해석 (Free Vibration Analysis of the Partial Fuel Assembly Under Water Using Substructure Method)

  • 이강희;윤경호;송기남;김재용;이희남
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.246-249
    • /
    • 2006
  • Finite element vibration analysis of the trial 5x5 partial fuel assembly in the still water was performed using the substructure method. ANSYS software was used as a finite element modeling and modal analysis tool. The calculated natural frequencies of the partial fuel assembly were more consistent with the experimental results for the identical test model compared to the much larger solid model. This modeling technique can be utilized for the fuel assembly dynamic behavior analysis under normal operation, seismic and loss-of-coolant-accident analysis.

  • PDF

태양전지판의 유연 모드를 고려한 위성의 동적 모델링 (Dynamic Modeling of a Satellite with Solar Array Flexible Modes)

  • 김대관;박영웅;박근주;양군호;용기력
    • 한국항공우주학회지
    • /
    • 제37권9호
    • /
    • pp.837-842
    • /
    • 2009
  • 구성 모드(Component mode) 합성법을 이용하여, 태양전지판의 유연구조 진동특성을 고려한 위성의 축약된 동적 모델링 기법을 수립하였다. 유연구조 위성의 본체와 태양전지판을 서로 다른 두 개의 부구조물로 나누고, 각각의 국부좌표계에 대하여 유도된 부구조물 표현식들을 위성 전체의 기준좌표계에 대해서 합성하였다. 수립된 부구조물 합성법은 단일 태양전지판을 갖는 유연구조 위성의 수치적 예제에 적용되었으며, 태양전지판의 회전을 고려한 전달함수 결과의 고찰을 통하여 동적 모델링 기법의 타당성을 확인하였다.

A Time Integration Method for Analysis of Dynamic Systems Using Domain Decomposition Technique

  • Fujikawa Takeshi;Imanishi Etsujiro
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.429-436
    • /
    • 2005
  • This paper presents a precise and stable time integration method for dynamic analysis of vibration or multibody systems. A total system is divided into several subsystems and their responses are calculated separately, while the coupling effect is treated equivalently as constant force during time steps. By using iterative procedure to improve equivalent coupling forces, a precise and stable solution is obtained. Some examples such as a seismic response and multibody analyses were carried out to demonstrate its usefulness.

재해석 기법에 의한 충격 하중을 받는 쉘 구조물의 동적 응답 해석에 관한 연구 (A Study on the Dynamic Response Analysis of Shell Structure with Impulsive Load by Reanalysis Technique)

  • 배동명
    • 수산해양기술연구
    • /
    • 제29권2호
    • /
    • pp.132-151
    • /
    • 1993
  • The proposed method in this paper. termed the substructural reanalysis technique, utilizes the computational merits of the component mode synthesis technique and of reanalysis technique for the design sensitivities of the dynamic characteristics of substructurally combined structure. It is shown that the dynamic characteristics of the entire structure can be obtained by synthesizing the substructural eigensolution and the characteristics of the eigensolution for the design variables of the modifiable substructure. In this paper , the characteristics of the eigenvalue problems obtained by this proposed method are compared to exact eigensolution in terms of accuracy and computational efficiency. and the advantage of this proposed method as compared to the direct application of the whole structure and experimental results is demonstrated through examples of numerical calculation for the dynamic characteristics (natural frequencies and mode shapes) of a flexible vibration of thin cylinderical shell with branch shell under 2-end fixed positions, boundary condition. Thin cylinderical shell of overall length 1280mm, external diameter 360mm, thickness 3mm with branch shell is made of mild steel. The load condition for dynamic response in this paper is impulsive load of which magnitude is 10kgf, which have short duration of 0.1 sec. and time interval applied to calculate. $\Delta$T is 1.0$\times$10 super(-4) seconds.

  • PDF

매입구조물(埋入構造物)과 층상지반상(層狀地盤上) 구조물(構造物)에 대한 지반(地盤)-구조물(構造物) 상호(相互) 작용(作用)의 단순해석(單純解析) (A Simplified Soil-Structure Interaction Analytical Technique of Embedded Structure and Structure on Layered Soil Sites)

  • 조양희;이용일;김종수
    • 대한토목학회논문집
    • /
    • 제7권2호
    • /
    • pp.45-57
    • /
    • 1987
  • 지진하중(地震荷重)에 대한 구조물(構造物)의 동적(動的) 거동(擧動)은 지반(地盤)의 특성(特性)에 따라 현저한 차이(差異)를 나타내게 되는데 이러한 현상(現象)을 동적(動的) 지반(地盤)-구조물(構造物) 상호작용(相互作用)이라고 한다. 지반(地盤)-구조물(構造物) 상호작용(相互作用)의 해석방법(解析方法)은 크게 직접법(直接法)과 부분구조법(部分構造法)으로 구분되며, 이 중 부분구조법(部分構造法)은 직접법(直接法)에 비하여 해석방법(解析方法)은 간편하지만 매입구조물(埋入構造物)이나 층상지반상(層狀地盤上) 구조물(構造物)에 대한 해석 시 많은 제약(制約)을 받게 된다. 본 논문(論文)에서는 원친적으로 반무한탄성체지반상(半無限彈性體地盤上) 구조물(構造物)에만 효과적으로 적용(適用)할 수 있는 부분구조법(部分構造法)을 적절히 응용(應用)하여 매입구조물(埋入構造物) 혹은 층상지반상(層狀地盤上) 구조물(構造物)에도 적용할 수 있는 방법을 제시(提示)하였으며, 직접법(直接法)에 의한 해석프로그램인 FLUSH의 해석결과와 비교(比較) 검토(檢討)하여 그 타당성(妥當性)을 입증(立證)하였다.

  • PDF

부분 구조 모드 합성법 및 유전 전략 최적화 기법을 이용한 비부합 절점을 가진 구조물의 구조변경 (Structural Dynamics Modification of Structures Having Non-Conforming Nodes Using Component Mode Synthesis and Evolution Strategies Optimization Technique)

  • 이준호;정의일;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.651-659
    • /
    • 2002
  • Component Mode Synthesis (CMS) is a dynamic substructuring technique to get an approximate eigensolutions of large degree-of-freedom structures divisible into several components. But, In practice. most of large structures are modeled by different teams of engineers. and their respective finite element models often require different mesh resolutions. As a result, the finite element substructure models can be non-conforming and/or incompatible. In this work, A hybrid version of component mode synthesis using a localized lagrange multiplier to treat the non-conforming mesh problem was derived. Evolution Strategies (ESs) is a stochastic numerical optimization technique and has shown a robust performance for solving deterministic problems. An ESs conducts its search by processing a population of solutions for an optimization problem based on principles from natural evolution. An optimization example for raising the first natural frequency of a plate structure using beam stiffeners was presented using hybrid component mode synthesis and robust evolution strategies (RES) optimization technique. In the example. the design variables are the positions and lengths of beam stiffeners.

  • PDF