• Title/Summary/Keyword: dynamic stiffness method

Search Result 967, Processing Time 0.03 seconds

A Parameter Study for Static and Dynamic Denting

  • Jung, Dong-Won;Worswick, M.J.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2009-2020
    • /
    • 2004
  • A parametric study of the factors controlling static and dynamic denting, as well as local stiffness, has been made on simplified panels of different sizes, curvatures, thicknesses and strengths. Analyses have been performed using the finite element method to predict dent resistance and panel stiffness. A parametric approach is used with finite element models of simplified panels. Two sizes of panels with square plan dimensions and a wide range of curvatures are analysed for several combinations of material thickness and strength, all representative of auto-motive closure panels. Analysis was performed using the implicit finite element code, LS-NIKE, and the explicit dynamic code, LS-DYNA for the static and dynamic cases, respectively. Panel dent resistance and stiffness behaviour are shown to be complex phenomena and strongly interrelated. Factors favouring improved dent resistance include increased yield strength and panel thickness. Panel stiffness also increases with thickness and with higher curvatures but decreases with size and very low curvatures. Conditions for best dynamic and static dent performance are shown to be inherently in conflict ; that is, panels with low stiffness tend to perform well under impact loading but demonstrate inferior static dent performance. Stiffer panels are prone to larger dynamic dents due to higher contact forces but exhibit good static performance through increased resistance to oil canning.

Vibration Analysis of a Coil Spring by Using Dynamic Stiffness Method (동강성법을 이용한 코일스프링의 진동 해석)

  • Lee, Jae-Hyung;Kim, Seong-Keol;Heo, Seung-Jin;Thompson, D.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1933-1938
    • /
    • 2000
  • The partial differential equations for a coil spring derived from Timoshenko beam theory and Frenet formulae. Dynamic stiffness matrix of a coil spring composed of a circular wire is assembled by using dispersion relationship, waves and natural frequencies. Natural frequencies are obtained from maxima in the determinant of inverse of a dynamic stiffness matrix with appropriate boundary conditions. The results of the dynamic stiffness method are compared with those of transfer matrix method, finite element method and test.

  • PDF

Torsional Vibration Analysis of Shaft System Using Transfer Dynamic Stiffness Coefficient (동강성계수의 전달을 이용한 축계의 비틀림진동 해석)

  • Moon, D.H.;Choi, M.S.;Sim, J.M.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.91-97
    • /
    • 1997
  • Recently, it is increased by degrees to construct complex and large structures. In general, in order to solve the dynamic problem of these structures they have used finite element method(FEM). In this method, however, it is necessary to prove whether its results are correct or not. Therefore it requires much effort, time and many expenses for dynamic analysis of complex and large structures. Authors have developed the transfer dynamic stiffness coefficient method(TDSCM) which is the new vibration analysis method for complex and large structures on personal computer, and confirmed that the results of this method are good for these structures on personal computer. In this paper, TDSCM is applied to the torsional vibration analysis for the shaft system which consist of concentrated disks and shafts of continuous body. First, we formulate algorithms for torsional free and forced vibration analysis, and compare the results of TDSCM and FEM.

  • PDF

Torsional Vibration Analysis of a Spur Gear Pair with the Variable Mesh Stiffness (기어이의 변동물림강성을 고려한 비틀림진동해석)

  • Ryu, Jae-Wan;Han, Dong-Chul;Choi, Sang-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.99-108
    • /
    • 1999
  • A four-degree-of-freedom non-linear model with time varying mesh stiffness has been developed for the dynamic analysis of spur gear trains. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover. In the model, developed several factors such as time varying mesh stiffness and damping, separation of teeth, teeth collision, various gear errors and profile modifications have been considered. Two computer programs are developed to calculate stiffness of a gear pair and transmission error and the dynamic analysis of modeled system using time integration method. Dynamic tooth and mesh forces, dynamic factors are calculated. Numerical examples have been given, which shows the time varying mesh stiffness ha a significant effect upon the dynamic tooth force and torsional vibrations.

  • PDF

Dynamic Stiffness of the Scaled Boundary Finite Element Method for Non-Homogeneous Elastic Space (비동질 탄성 무한공간에 대한 비례경계유한요소법의 동적강도행렬)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.165-173
    • /
    • 2010
  • In this paper, the dynamic stiffness of scaled boundary finite element method(SBFEM) was analytically derived to represent the non-homogeneous space. The non-homogeneous parameters were introduced as an expotential value of power function which denoted the non-homogeneous properties of analysis domain. The dynamic stiffness of analysis domain was asymptotically expanded in frequency domain, and the coefficients of polynomial series were determined to satify the radiational condition. To verify the derived dynamic stiffness of domain, the numerical analysis of the typical problems which have the analytical solution were performed as various non-homogeneous parameters. As results, the derived dynamic stiffness adequatlly represent the features of the non-homogeneous space.

A Study on the Finite Element Modeling and Analytical Parameters for the Dynamic Stiffness Evaluation of Shipboard Equipment Foundations (선박 장비 받침대의 동강성 평가를 위한 유한요소 모델링과 해석 인자에 관한 연구)

  • Kim, Kook-Hyun;Kim, Yun-Hwan;Choi, Tae-Muk;Choi, Sung-Won;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.808-812
    • /
    • 2010
  • This paper studies the finite element modeling and analytical parameters for the numerical evaluation of dynamic stiffness of large foundation for shipboard equipments such as marine diesel engine. For the purpose, numerical method and procedure to evaluate the dynamic stiffness are established based on the impact test method, which are applied for the dynamic stiffness evaluation of a real diesel generator foundation of ship. Numerical investigations compared with the measured data are carried out to evaluate the effects of modeling ranges of ship substructure, finite element sizes, lower support structures and damping coefficients. From the results, modeling and analytical parameters for proper evaluation of dynamic stiffness of large foundation of shipboard equipment are suggested.

Study on the dynamic stiffness variation of boring bar by Taguchi Method (다구찌 방법을 이용한 보링바의 동강성 변동에 관한 연구)

  • Chun, Se-Ho;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.98-104
    • /
    • 2009
  • The objective of this paper is to investigate the effect of factors on the dynamic stiffness variation of boring bar. The experiment was carried out by Taguchi Method and Orthogonal array table. The results indicate that overhang was found out to be dominant factor with 95% confident intervals and feed rate and depth of cut were insignificant. In addition, analysis of loss function shows that loss value increased sharply from 3D to 4D(D is a shank diameter). Consequently, there is critical point which changes property of dynamic stiffness.

  • PDF

Distributed parameters modeling for the dynamic stiffness of a spring tube in servo valves

  • Lv, Xinbei;Saha, Bijan Krishna;Wu, You;Li, Songjing
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.327-337
    • /
    • 2020
  • The stability and dynamic performance of a flapper-nozzle servo valve depend on several factors, such as the motion of the armature component and the deformation of the spring tube. As the only connection between the armature component and the fixed end, the spring tube plays a decisive role in the dynamic response of the entire system. Aiming at predicting the vibration characteristics of the servo valves to combine them with the control algorithm, an innovative dynamic stiffness based on a distributed parameter model (DPM) is proposed that can reflect the dynamic deformation of the spring tube and a suitable discrete method is applied according to the working condition of the spring tube. With the motion equation derived by DPM, which includes the impact of inertia, damping, and stiffness force, the mathematical model of the spring tube dynamic stiffness is established. Subsequently, a suitable program for this model is confirmed that guarantees the simulation accuracy while controlling the time consumption. Ultimately, the transient response of the spring tube is also evaluated by a finite element method (FEM). The agreement between the simulation results of the two methods shows that dynamic stiffness based on DPM is suitable for predicting the transient response of the spring tube.

Flexibility Analysis of 4-Bar Linkage Mechanism (4절 링크기구의 유연성 해석)

  • 조선휘;박종근;한성현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1365-1373
    • /
    • 1994
  • Elasto-dynamic deformation of flexible linkage mechanism was analyzed using the finite element method. A computer program was constructed and applied to analyze a specific crank-level 4-bar mechanism, in which the elasto-dynamic deformation of the mechanism system was obtained using mode superposition method in the case of constant input speed and the effect of geometric stiffness on the mechanism is included. Experimental verification of numerical results was conducted by measuring the elasto-dynamic deformation of mid-points of coupler and lever for the 4-bar lingkage mechanism using high speed camera and image data processing systeem. For the elasto-dynamic deformation at the lever mid-point, the numerical results including geometric stiffness almost agree with the experimental ones. However, the numerical results excluding geometric stiffness good agree with the experimental ones at the couper mid-point.

Use of bivariate gamma function to reconstruct dynamic behavior of laminated composite plates containing embedded delamination under impact loads

  • Lee, Sang-Youl;Jeon, Jong-Su
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study deals with a method based on the modified bivariate gamma function for reconstructions of dynamic behavior of delaminated composite plates subjected to impact loads. The proposed bivariate gamma function is associated with micro-genetic algorithms, which is capable of solving inverse problems to determine the stiffness reduction associated with delamination. From computing the unknown parameters, it is possible for the entire dynamic response data to develop a prediction model of the dynamic response through a regression analysis based on the measurement data. The validity of the proposed method was verified by comparing with results employing a higher-order finite element model. Parametric results revealed that the proposed method can reconstruct dynamic responses and the stiffness reduction of delaminated composite plates can be investigated for different measurements and loading locations.