• Title/Summary/Keyword: dynamic state feedback

Search Result 223, Processing Time 0.044 seconds

Design of a State Feedback Controller with a Current Estimator in Brushless DC Motors (전류추정기에 의한 브러시리스 직류전동기의 상태변수 궤환제어기 설계)

  • Oh, Tae-Seok;Shin, Yun-Su;Kim, Il-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.589-595
    • /
    • 2007
  • This paper presents a new method on controller design of brushless dc motors. In such drives the current ripples are generated by motor inductance in stator windings and the back EMF. To suppress the current ripples the current controller is generally used. To minimize the size and the cost of the drives it is desirable to control motors without the current controller and the current sensing circuits. To estimate the motor CUlTent it is modeled by a neural network that is contigured as an output-error dynamic system. The identified model is essentially a one step ahead prediction structure in which past inputs and outputs are used to calculate the current output. Using the model, a state feedback controller to compensate the effects of disturbance has been designed. The controller is implemented by a 16-bit microprocessor and the effectiveness of the proposed control method is verified through experiments.

Robust Control of Robot Manipulators using Vision Systems

  • Lee, Young-Chan;Jie, Min-Seok;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.162-170
    • /
    • 2003
  • In this paper, we propose a robust controller for trajectory control of n-link robot manipulators using feature based on visual feedback. In order to reduce tracking error of the robot manipulator due to parametric uncertainties, integral action is included in the dynamic control part of the inner control loop. The desired trajectory for tracking is generated from feature extraction by the camera mounted on the end effector. The stability of the robust state feedback control system is shown by the Lyapunov method. Simulation and experimental results on a 5-link robot manipulator with two degree of freedom show that the proposed method has good tracking performance.

  • PDF

Reduced-order Controller Design using Projective Controls (투영제어 기법을 이용한 제어기의 저차수화 설계)

  • Sang-Woo Nam
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.7
    • /
    • pp.943-951
    • /
    • 1995
  • In this paper the projective controls, previously derived to preserve the dynamic modes of a state-feedback reference system, are extended to allow the preservation of the modes of a general output-feedback reference system. In general, the extension allows projective controls to be used as a controller approximation technique, where a reduced-order controller is designed to approximate the closed-loop behavior of the higher-order reference controller. This extension is useful if the best available reference control for the system is an output-feedback control. An example shows that the increased design freedom of proposed design method allows the stabilization of a given plant using a lower-order controller than the projective controls with state-feedback reference.

  • PDF

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

A Dynamic Decoupling of Two Cooperating Robot System and Stability Analysis (협조로보트 시스템의 동적 Decoupling과 안정도연구)

  • 최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 1996
  • This paper presents a new control scheme for decoupling the dynamics of two coordinating robot manipulators. A simple full-state feedback scheme with configuration dependent gains can be devised to decouple the system dynamics such that the dynamics of each arm and that of an object held by the two arms is independent of one another. A condition for stability is shown. The advantage of the proposed scheme is that the same control scheme can be applied both for the closed kinematic chain(object-grasping) case and open kinematic chain(no object-grasping) case.

  • PDF

STABILITY OF FUZZY DYNAMIC CONTROL SYSTEM: The Cell-State Transition Method

  • Kang, Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1078-1081
    • /
    • 1993
  • The Objective of this paper is to provide fuzzy control designers with a design tool for stable fuzzy logic controllers. Given multiple sets of data disturbed by vagueness uncertainty, we generate the implicative rules that guarantee stability and robustness of closed-loop fuzzy dynamic systems. We propose the cell-state transition method which utilizes Hsu's cell-to-cell mapping concept [1]. As a result, a generic and implementable design methodology for obtaining a fuzzy feedback gain K, a fuzzy hypercube [2], is provided and illustrated with simple examples.

  • PDF

Dynamic Stabilization for a Nonlinear System with Uncontrollable Unstable Linearization (제어불가능 불안정 선형화를 가지는 비선형 시스템에 대한 다이나믹 안정화)

  • Seo, Sang-Bo;Shim, Hyung-Bo;Seo, Jin-Heon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, we design a dynamic state feedback smooth stabilizer for a nonlinear system whose Jacobian linearization may have uncontrollable mode because its eigenvalues are on the right half-plane. After designing an augmented system, a dynamic exponent scaling and backstepping enable one to explicitly design a smooth stabilizer and a continuously differentiable Lyapunov function which is positive definite and proper. The convergence of the designed controller is proved by the new notion 'degree indicator'.

Output-Feedback Input-Output Linearizing Controller for Nonlinear System Using Backward-Difference State Estimator (후방차분 상태 추정기를 이용한 비선형 계통의 입출력 궤환 선형화 제어기)

  • Kim, Seong-Hwan;Park, Jang-Hyun
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.72-78
    • /
    • 2005
  • This paper describes the design of a robust output-feedback controller for a single-input single-output nonlinear dynamical system with a full relative degree. While all the previous research works on the output-feedback control are based on dynamic observers, a new state estimator which uses the past values of the measurable system output is proposed. We name it backward-difference state estimator since the derivatives of the output are estimated simply by backward difference of the present and past values of the output. The disturbance generated due to the error between the estimated and real state variables is compensated using an additional robustifying control law whose gain is tuned adaptively. Overall control system guarantees that the tracking error is asymptotically convergent and that all signals involved are uniformly bounded. Theoretical results are illustrated through a simulation example of inverted pendulum.

  • PDF

A Study on the Analysis and Design of Nonlinear Control Systems using Personal Computer (개인용 컴퓨터를 이용한 비선형 제어 시스템의 해석 및 설계에 관한 연구)

  • Nam, Moon-Hyun;Jeong, Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.82-85
    • /
    • 1987
  • The objective of this paper is to develop computer programs to aid in the design and analysis of control systems in which nonlinear characteristics exist. Control systems are dynamic systems, which can be described using various mathematical models. A convenient model for digital computer simulation is the state model in which described using a set of linear and non linear first order differential equations. The digital simulation was performed on a IBM PC/XT personal computer, and the computer language was BASIC. There are four possible configurations from which a user may choose. When running a program, the user is asked to enter the system parameters according to a specified control system configurations are; 1. A control system with a nonlinear element followed by a plant in a feedback configurations(NLSVF1). 2. A control system with a nonlinear device situated between two plants in a feedback configurations(NLSVF2). 3. A control system with a nonlinear element followed by a plant, followed by a the dealy in feedback configurations(TLAG). 4. A motor and load with a backlash nonlinearity between dynamic portions of the motor/load configurations (BACKLASH). The matrix from state equations are integrated using combination the trapezoidal method and fixed point iteration. Several cases which have nonlinearity were implemented on the computer and the results were discussed.

  • PDF

Observer Theory Applied to the Optimal Control of Xenon Concentration in a Nuclear Reactor (옵저버 이론의 원자로 지논 농도 최적제어에의 응용)

  • Woo, Hae-Seuk;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.99-110
    • /
    • 1989
  • The optimal control of xenon concentration in a nuclear reactor is posed as a linear quadratic regulator problem with state feedback control. Since it is not possible to measure the state variables such as xenon and iodine concentrations directly, implementation of the optimal state feedback control law requires estimation of the unmeasurable state variables. The estimation method used is based on the Luenberger observer. The set of the reactor kinetics equations is a stiff system. This singularly perturbed system arises from the interaction of slow dynamic modes (iodine and xenon concentrations) and fast dynamic modes (neutron flux, fuel and coolant temperatures). The singular perturbation technique is used to overcome this stiffness problem. The observer-based controller of the original system is effected by separate design of the observer and controller of the reduced subsystem and the fast subsystem. In particular, since in the reactor kinetics control problem analyzed in the study the fast mode dies out quickly, we need only design the observer for the reduced slow subsystem. The results of the test problems demonstrated that the state feedback control of the xenon oscillation can be accomplished efficiently and without sacrificing accuracy by using the observer combined with the singular perturbation method.

  • PDF