• Title/Summary/Keyword: dynamic state estimation

Search Result 222, Processing Time 0.028 seconds

A Study on Adaptive Converter Control Approach for Velocity Control of Electric Motors with Photovoltaic Power Generators (태양광 발전 기반 전동기 속도 제어를 위한 적응형 컨버터 제어 기법에 관한 연구)

  • Park, Sung Won;Kim, Dong Wan;Cho, Hyun Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1400-1406
    • /
    • 2016
  • This paper presents a new adaptive converter control approach for electric motor systems whose voltage source is excited from photovoltaic (PV) power generators. First, an electric model is represented with dynamic states and output velocity of such DC motor systems. We propose a hybrid converter control law in which a state feedback control is applied as an auxiliary control framework. Moreover, control parameter estimation is derived to realize adaptive converter systems for effective control performance against stochastic PV power excitation in practice. We carry out stability analysis for such converter system by using a well-known eigenvalue theory. Lastly, numerical simulation is conducted to test reliability of the proposed converter control approach and prove its superiority in the control point of view.

A Finite Memory Filter for Discrete-Time Stochastic Linear Delay Systems

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.216-220
    • /
    • 2019
  • In this paper, we propose a finite memory filter (estimator) for discrete-time stochastic linear systems with delays in state and measurement. A novel filtering algorithm is designed based on finite memory strategies, to achieve high estimation accuracy and stability under parametric uncertainties. The new finite memory filter uses a set of recent observations with appropriately chosen initial horizon conditions. The key contribution is the derivation of Lyapunov-like equations for finite memory mean and covariance of system state with an arbitrary number of time delays. A numerical example demonstrates that the proposed algorithm is more robust and accurate than the Kalman filter against dynamic model uncertainties.

Tire Lateral Force Estimation System Using Nonlinear Kalman Filter (비선형 Kalman Filter를 사용한 타이어 횡력 추정 시스템)

  • Lee, Dong-Hun;Kim, In-Keun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.126-131
    • /
    • 2012
  • Tire force is one of important parameters which determine vehicle dynamics. However, it is hard to measure tire force directly through sensors. Not only the sensor is expensive but also installation of sensors on harsh environments is difficult. Therefore, estimation algorithms based on vehicle dynamic models are introduced to estimate the tire forces indirectly. In this paper, an estimation system for estimating lateral force and states is suggested. The state-space equation is constructed based on the 3-DOF bicycle model. Extended Kalman Filter, Unscented Kalman Filter and Ensemble Kalman Filter are used for estimating states on the nonlinear system. Performance of each algorithm is evaluated in terms of RMSE (Root Mean Square Error) and maximum error.

A Study on Vehicle Ego-motion Estimation by Optimizing a Vehicle Platform (차량 플랫폼에 최적화한 자차량 에고 모션 추정에 관한 연구)

  • Song, Moon-Hyung;Shin, Dong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.818-826
    • /
    • 2015
  • This paper presents a novel methodology for estimating vehicle ego-motion, i.e. tri-axis linear velocities and angular velocities by using stereo vision sensor and 2G1Y sensor (longitudinal acceleration, lateral acceleration, and yaw rate). The estimated ego-motion information can be utilized to predict future ego-path and improve the accuracy of 3D coordinate of obstacle by compensating for disturbance from vehicle movement representatively for collision avoidance system. For the purpose of incorporating vehicle dynamic characteristics into ego-motion estimation, the state evolution model of Kalman filter has been augmented with lateral vehicle dynamics and the vanishing point estimation has been also taken into account because the optical flow radiates from a vanishing point which might be varied due to vehicle pitch motion. Experimental results based on real-world data have shown the effectiveness of the proposed methodology in view of accuracy.

Harmonics Assessment for an Electric Railroad Feeding System using Moments Matching Method (모멘트 정합 방법(Moment Matching Method)을 이용한 전기철도 급전시스템의 고조파 평가)

  • Lee, Jun-Kyong;Lee, Seung-Hyuk;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Generally, an electric railroad feeding system has many problems due to the different characteristics in contrast with a load of general three-phase AC electric power system. One of them is harmonics problem caused by the switching device existing in the feeding system, and moreover, the time-varying dynamic loads of rail way is inherently another cause to increase this harmonics problem. In Korea power systems, the electric railroad feeding system is directly supplied from the substation of KEPCO. Therefore, if voltages fluctuation or unbalanced voltages are created by the voltage and current distortion or voltage drop during operation, it affects directly the source of supply. The trainloads of electric railway system have non-periodic but iterative harmonic characteristics as operating condition, because the electric characteristic of the electric railroad feeding system is changed by physical conditions of the each trainload. According to the traditional study, the estimation of harmonics has been performed by deterministic way using the steady state data at the specific time. This method is easy to analyze harmonics, but it has limits in some cases which needs an assessment of dynamic load and reliability. Therefore, this paper proposes the probabilistic estimation method, moments matching method(MW) in order to overcome the drawback of deterministic method. In this paper, distributions for each harmonics are convolved to obtain the moments and cumulants of TDD(Total Demand Distortion), and this can be generalized for any number of trains. For the case study, the electric railway system of LAT(Intra Airport Transit) in Incheon International Airport is modeled using PSCAD/EMTDC dynamic simulator. The raw data of harmonics for the moments matching method is acquired from simulation of the LAT model.

Estimation of Moving Loads by Measuring Dynamic Response (동적 거동계측을 통한 이동하중 추정)

  • Cho, Jae Yong;Shin, Soobong;Choi, Kwang-Kyu;Kwon, Soon-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.129-137
    • /
    • 2007
  • An algorithm is proposed for estimating axle loads of trucks moving over a bridge by measuring dynamic responses. The bridge was modeled by a beam structure in the current applications of the proposed algorithm. Among the state vectors, measured acceleration was used and displacement was computed from measured strain at the same location. Nodal force vectors were computed by using a ready-made database of equivalent nodal force transformation matrix. The algorithm was examined through simulation studies and laboratory experiments. The effects of measurement noise and velocity error were investigated through simulation studies.

Adaptive Feedback Linearization Technique of PM Synchronous Motor With Specified Output Dynamic Performance (규정된 동특성을 갖는 영구 자석형 동기 전동기의 적응 궤환 선형화 제어 기법)

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Joo, Hyeong-Gil;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.334-336
    • /
    • 1995
  • An adaptive feedback linearization technique of a PM synchronous motor with specified output dynamic performance is proposed. The adaptive parameter estimation is achieved by a model reference adaptive technique where the stator resistance and flux linkage can be estimated with the current dynamic model and the state observer. Using these estimated parameters, the linearizing control inputs are calculated and a nonlinear coupled model of a PM synchronous motor is input-output linearized. The resultant model has the load torque disturbance. To get ti perfect decoupled model, the load torque is estimated. The adaptation laws are derived by the hyperstability theory and positivity concept. The robustness of the proposed control scheme will be proven through the computer simulations.

  • PDF

Kalman Filter for Estimation of Sensor Acceleration Using Six-axis Inertial Sensor (6축 관성센서를 이용한 센서가속도 추정용 칼만필터)

  • Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.179-185
    • /
    • 2015
  • Although an accelerometer is a sensor that measures acceleration, it cannot be used by itself to measure the acceleration when the orientation of the sensor changes. This paper introduces a Kalman filter for the estimation of a sensor acceleration based on a six-axis inertial sensor (i.e., a three-axis accelerometer and three-axis gyroscope). The novelty of the proposed Kalman filter lies in the fact that its state vector includes not only the tilt angle variable but also the sensor acceleration. Thus, the filter can explicitly estimate the latter with a high accuracy. The accuracy of acceleration estimates were validated experimentally under three different dynamic conditions, using an optical motion capture system. It could be concluded that the performance of the proposed Kalman filter was comparable to that of the state-of-the-art estimation algorithm employed by the Xsens MTw. The proposed algorithm may be more suitable than inertial/magnetic sensor-based algorithms for various applications adopting six-axis inertial sensors.

TOUSE: A Fair User Selection Mechanism Based on Dynamic Time Warping for MU-MIMO Networks

  • Tang, Zhaoshu;Qin, Zhenquan;Zhu, Ming;Fang, Jian;Wang, Lei;Ma, Honglian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4398-4417
    • /
    • 2017
  • Multi-user Multiple-Input and Multiple-Output (MU-MIMO) has potential for prominently enhancing the capacity of wireless network by simultaneously transmitting to multiple users. User selection is an unavoidable problem which bottlenecks the gain of MU-MIMO to a great extent. Major state-of-the-art works are focusing on improving network throughput by using Channel State Information (CSI), however, the overhead of CSI feedback becomes unacceptable when the number of users is large. Some work does well in balancing tradeoff between complexity and achievable throughput but is lack of consideration of fairness. Current works universally ignore the rational utilizing of time resources, which may lead the improvements of network throughput to a standstill. In this paper, we propose TOUSE, a scalable and fair user selection scheme for MU-MIMO. The core design is dynamic-time-warping-based user selection mechanism for downlink MU-MIMO, which could make full use of concurrent transmitting time. TOUSE also presents a novel data-rate estimation method without any CSI feedback, providing supports for user selections. Simulation result shows that TOUSE significantly outperforms traditional contention-based user selection schemes in both throughput and fairness in an indoor condition.

An Adaptive Algorithm Applied to a Design of Robust Observer

  • Son, Young-Ik;Hyungbo Shim;Juhoon Back;Jo, Nam-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1443-1449
    • /
    • 2003
  • Primary goal of adaptive observers would be to estimate the true states of a plant. Identification of unknown parameters is of secondary interest and is achieved frequently with the persistent excitation condition of some regressors. Nevertheless, two problems are linked to each other in the classical approaches to adaptive observers; as a result, we get a good state estimate once after a good parameter estimate is obtained. This paper focuses on the state estimation without parameter identification so that the state is estimated regardless of persistent excitation. In this direction of research, Besancon (2000) recently summarized that most of adaptive observers in the literature share one common canonical form, in which unknown parameters do not affect the unmeasured states. We enlarge the class of linear systems from the canonical form of (Besancon, 2000) by proposing an adaptive observer (with additional dynamics) that allows unknown parameters to affect those unmeasured states. A recursive algorithm is presented to design the proposed dynamic observer systematically. An example confirms the design procedure with a simulation result.