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Abstract

In this paper, we propose a finite memory filter (estimator) for discrete-time stochastic linear systems with delays in state and mea-

surement. A novel filtering algorithm is designed based on finite memory strategies, to achieve high estimation accuracy and stability

under parametric uncertainties. The new finite memory filter uses a set of recent observations with appropriately chosen initial horizon

conditions. The key contribution is the derivation of Lyapunov-like equations for finite memory mean and covariance of system state

with an arbitrary number of time delays. A numerical example demonstrates that the proposed algorithm is more robust and accurate

than the Kalman filter against dynamic model uncertainties
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1. INTRODUCTION

The problem of state estimation for dynamic systems with time

delays has received a great deal of research interest. The time

delay phenomenon in state variables is unavoidable in many real

systems [1]. For example, LEO satellite communication systems

have multiple channel delays [2]. Hence, remote control of robot

systems can be conducted in a cloud platform through data

connection with a robot manipulator. The important applications

of cloud robotics can be found in space exploration, remote

surgery, intelligent housing systems, unmanned vehicles, and so

on [3]-[7]. These systems have motivated researchers to study the

control and filtering problem of systems with time delays [8].

Using finite-memory estimation, we can obtain an estimate

based on data from the recent past only (finite memory). As a

result, finite memory Kalman filters are more robust against

model uncertainties and numerical errors than standard Kalman

filters, which utilize all measurements [9, 10]. Thus, a finite

memory filter was chosen in this study.

Based on the aforementioned literature, and to the best of the

authors’ knowledge, there are no existing results for finite

memory filtering for linear systems with time delays. Motivated

by the above problems, we focus on estimating the state of a

discrete-time linear system with time delays in both the state and

observation matrices, using a finite memory strategy. We derive

from crucial Lyapunov-like equations, finite memory mean and

covariance of systems with an arbitrary number of time delays.

Moreover, the obtained results are valid for general linear systems

with time delays in both dynamic and observation models.

The remainder of this paper is organized as follows. In Section

II, the problem statement is given. In Section III, we present the

finite memory filter for discrete-time linear systems with time

delays. Here, the exact and recursive equations for determining

the finite memory initial conditions (mean and covariance) are

derived and discussed. In Section IV, an implementation of a

stochastic system with uncertainties is considered to compare

between the Kalman filter with time delays (KFTD) and the

proposed finite memory filter. The effectiveness and comparative

analysis of the proposed filter with the KFTD are then presented.

Finally, we provide a summary of our conclusions in Section V.

2. PROBLEM STATEMENT

We first consider a discrete-time linear system described by

stochastic recursive equations with time delays:

 (1)

where  is an unknown state, , h=0,1,…,M are

 time-varying matrices, ,  are
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initial conditions,  is a zero-mean white Gaussian

noise with covariance , and  is the

Kronecker function.

The discrete measurement  is: 

 (2)

where , d=0,1,…,L is the measurement matrix, and

 is a zero-mean white Gaussian noise with covariance

. 

We also assume that the initial states: , s=0,1,…,M,

system noise , and measurement errors  are mutually

uncorrelated, i.e.,

(3)

The main problem associated with such a system is then to find

the estimate of the unknown state x(k) based on the overall

horizon sensor measurement y(k) with horizon time intervals 

i.e., 

 (4)

Using KFTD’s equations for the system (1) and (2) presented

by Mishra [11] and Priemer [12], we propose their finite memory

version for estimation of state x(k) using finite memory

measurements y(k) in (4). The details of our new Finite Memory

Kalman Filter with Time Delays (FMKFTD) are described in the

next section.

3. A FINITE MEMORY FILTER FOR 

SYSTEMS WITH TIME-DELAYS

The KFTD’s equations for the system (1) and (2) presented by

[11] and [12] are used to find  based on finite memory

measurements y(k), we obtain:

 (5)

 (6)

 (7)

where the finite memory filter gains  

and error auto-covariances

 (8)

are described as follows by:

(9)

 (10)

 (11)

In contrast to the KFTD filtering, the finite memory filtering

(5)-(11) needs to initialize (M+1) horizon initial conditions at

 which represents an unconditional means and

covariance, i.e.,

(12)

And

 (13)

Theorem 1: The horizon initial means (12) are described by

 (14)

with initial conditions: 

 (15)

Theorem 2: The horizon initial covariances (13) satisfy

Lyapunov-like recursive equations

(16)
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(17)

with initial conditions:

 (18)

Derivation of Lyapunov-like equations for mean and covariance

(14)-(18) is included in the appendix.

Remark. Original initial conditions for the KFTD at different

time instants  are identical in contrast to

horizon initial conditions (12) and (13) that more realistically.

4. NUMERICAL EXAMPLE

In this section, we present an example for discrete-time

dynamic systems with parametric model uncertainty . The

example demonstrates the robustness of the proposed FMKFTD

(5)-(18) in terms of mean square errors (MSEs).

We now consider the following LEO satellite communication

system with multiple time delay and uncertainty [2]. Low earth

orbit satellite channels impart severe spreading in delay and oppler

on the transmitted signal. The state vector x represents the

received signal level [dB]: 

 (19)

where  is a white Gaussian noise. The system noise intensity

 is  and the measurement noises  are also zero-

mean white Gaussian noises with covariances  The

initial values are  [dB] and

 

These are uncertain model parameters which are assumed to

satisfy

(20)

where  is the uncertainty interval (UI). The horizon

length Δ of the FMKFTD is taken as ,

respectively. The FMKFTD and KFTD (non-finite memory

version with time delays) [6, 7] for the system model (19) with the

uncertainty  which takes the form (20) are compared.

We now present model (19) to show the robustness of the finite

memory filter against the uncertainty . All simulations were

evaluated in terms of the MSEs of 1000 Monte Carlo runs. Fig. 1

compares the MSEs of FMKFTD (“FMKF”) with three KFTDs

(“KF”) with three different finite memory lengths Δ,

 (21)

Owing to the fact that the uncertainty  has little effect on

the behavior of the filters (estimates) after the extremity of interval

, for convenience of MSE analysis we introduce the

extended time interval , referred to as the

Extended Uncertainty Interval (EUI). According to the simulation

results,  and , our point of interest is the

behavior of the aforementioned filters, both inside and outside of

the time-interval . 

As shown in Fig. 1, we can observe that inside the EUI,

FMKFTD demonstrates good performance when compared to

KFTD; this is in general agreement with the robustness of the

finite memory strategy. The MSEs of the non-finite memory filter

KFTD is notably larger than the FMKFTD. However, the KFTD

performs slightly worse than the FMKFTD with a horizon length

of . Also, the FMKFTD with the horizon length  is

more accurate than the FMKFTD with horizon lengths  and

, such that: 

(22)

The reason for the presence of such a robust property (22) is to
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Fig. 1. MSEs comparison between KFTD and three FMKFTD
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Δ for sensors (memory of FMKFTD) should be minimal. In this

case . 

Here, we observe that the MSEs of the non-finite memory filter

KFTD is remarkably large in contrast to the finite memory version

FMKFTD. This means that for our example the application of the

FMKFTD can produce good results in real-time processing

requirements.

On the other hand, Fig. 2 shows that outside the TEUI the KFTD

is better than all FMKFTD, i.e.,

(23)

It should also be noted that the reduction of the horizon length

to zero  inside the uncertainty interval is impossible due

to the loss of sensor measurements (23). Thus, the problem in

finding the optimal horizon length Δ for each individual

FMKFTD is quite complex.

5. CONCLUSIONS

In this paper, we propose a new finite memory filter for

discrete-time linear systems with uncertainties and time delays in

both the state and observation matrices. Simulation analysis and

comparison with the KFTD verifies the effectiveness of the

proposed solution, FMKFTD. FMKFTD can be widely used in

many practical applications. The Lyapunov-like equations for

finite memory mean and covariance of system state with an

arbitrary number of time delays are derived.
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APPENDIX

Derivation of the equation for horizon initial mean (14)  Taking

expectations on both sides of (1) and using , we

immediately obtain the recursive equation (14) for mean

. 

Derivation of the equation for finite memory initial

covariance (16)

Subtracting (14) from (1) we obtain time propagation of the

centered state as follows:

(A.1)

Next we have:

(A.2)

Taking expectations on both sides of (A.2) and using the fact

that current noise  does not depend on current and past

states ,we obtain the recursive equation for

covariance (16):

 (A.3)

Note that equation (A.3) contains auto-covariance:

(A.4)

Derivation of the equation for auto-covariance (17) Using

the “symmetric” property of auto-covariance 

and without loss of generality we can assume that

 . Substituting  in (A.1) we obtain:

 (A.5)

Multiplying both sides of (A.5) by  and using

(A.4) we obtain: 

(A.6)

and

(A.7)

We then calculate the expectation in (A.7), i.e.,

 (A.8)

We calculate the product  using (A.5) and

after taking that expectation, we get:

(A.9)

According to assumption , “future” noise

  does not depend on current and past states

 therefore 

Next using the property of white noise we obtain:

 (A.10)

Finally using (A.7), (A.9) and (A.10) we get the equation for

auto-covariance (17). This completes the derivation Lyapunov-

like equations for finite memory mean and covariances.
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