• Title/Summary/Keyword: dynamic recovery

Search Result 383, Processing Time 0.029 seconds

A Study on Prototype Model for Mesoscopic Evacuation Using Cube Avenue Simulation Model (Cube Avenue 시뮬레이션 모델을 이용한 중규모 재난대피 프로토타입 모델 연구)

  • Sin, Heung Gweon;Joo, Yong Jin
    • Spatial Information Research
    • /
    • v.21 no.5
    • /
    • pp.33-41
    • /
    • 2013
  • Recently, the number of disasters has been seriously increasing. The total damages by the natural or man-made disasters during the past years resulted in tremendous fatalities and recovery costs. It is necessary to have efficient emergency evacuation management which is concerned with identifying evacuation route, and the estimation of evacuation and clearance times. An emergency evacuation model is important in identifying critical locations, and developing various evacuation strategies. In that existing evacuation models have focused on route analysis for indoor evacuation, there are only a few models for areawide emergency evacuation analysis. Therefore, we developed a mesoscopic model by using Cube Avenue and performed evacuation simulation, targeting road network in City of Fargo, North Dakota. Consequently, a mesoscopic model developed in this study is used to carry out dynamic analysis using network and input variable of existing travel demand model. The results of this study show that the model is an appropriate tool for areawide emergency evacuation analysis to save time and cost. Henceforth, the results of this study can be applied to develop a disaster evacuation model which can be used for a variety of disaster simulation and evaluation based on scenarios in the local metropolitan area.

A Study on the Architectural Environment as a Combination of Performance and Event (퍼포먼스.이벤트의 결합체로서 건축환경연구)

  • 김주미
    • Archives of design research
    • /
    • v.14
    • /
    • pp.121-138
    • /
    • 1996
  • The purpose of this study is to develop a new architectural language and design strategies that would anticipate and incorporate new historical situations and new paradigms to understand the world. It consists of four sections as follows: First, it presents a new interpretation of space, human body, and movement that we find in modern art and tries to combine that new artistic insight with environmental design to provide a theoretical basis for performance-event architecture. Second, it conceives of architectural environment as a combination of space, movement, and probabilistic situations rather than a mere conglomeration of material. It also perceives the environment as a stage for performance and the act of designing as a performance. Third, in this context, man is conceived of as an organic system that responds to, interacts with, and adapts himself to his environment through self-regulation. By the same token, architecture should be a dynamic system that undergoes a constant transformation in its attempt to accommodate human actions and behaviors as he copes with the contemporary philosophy characterized by the principle of uncertainty, fast-changing society, and the new developments in technology. Fourth, the relativistic and organic view-point that constitutes the background for all this is radically different from the causalistic and mechanistic view that characterized the forms and functions of modernistic design. The present study places a great emphases on dematerialistic conception of environment and puts forth a disprogramming method that would accommodate interchangeability in the passage of time and the intertextuality of form and function. In the event, performance-event architecture is a strategy based on the systems world-view that would enable the recovery of man's autonomy and the reconception of his environment as an object of art.

  • PDF

A Study on the Development of Impact Analysis Model of Roll Control System for Course Correction Munition (탄도 수정탄 롤제어시스템 충격해석 모델 개발에 관한 연구)

  • Ko, Jun Bok;Yun, Chan Sik;Kim, Yong Dae;Kim, Wan Joo;Cho, Seung Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.737-742
    • /
    • 2015
  • Course correction munition are a weapson system for precision attacks and are assembled by applying a ballistic control system to existing projectiles. The roll control system is a subsystem of the ballistic control system and is placed between the guidance and control units inside of the projectile, which undergoes a 5000g lateral acceleration. Thus, it is very important to design the system to endure this load. Many developed countries evaluate the performance and safety of course correction munitions' parts using live-fire gun launch tests or a soft recovery system. However, these methods are expensive and slow. Thus, in this study, we develop impact analysis model of the roll control system using CAE. We apply the code to simulate impact phenomenon and use Johnson-Cook material model for modeling the high strain rate effect on the materials. We also design bearings in detail to analyze their behavior and verify the reliability of CAE model through gas-gun impact tests of the roll control system.

Bioanalytical method validation for determination of arsenic speciation in dog plasma using HPLC-ICP/MS (Dog 혈장 중 HPLC-ICP/MS를 이용한 비소 화학종 분석법 검증)

  • Kim, Jong-Hwan;Kwon, Young Sang;Shin, Min-Chul;Kim, Su Jong;Seo, Jong-Su
    • Analytical Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.234-241
    • /
    • 2016
  • The approach presented in this article refers to the bioanalytical method validation for the detection and quantitative determination of arsenic species including arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) in dog plasma by high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP/MS). The arsenic species were separated using an agilent As speciation column by a mobile phase of 2 mM sodium phosphate monobasic, 0.2 mM ethylenediaminetetraacetic acid disodium salt dehydrate, 10 mM sodium acetate, 3 mM sodium nitrate and 1 % ethyl alcohol at pH 11 (adjusted with 1M NaOH). The method validation experiment was obtained selectivity, linearity, accuracy, precision, matrix effect, recovery, system suitability, dilution integrity and various stabilities. All calibration curves showed good linearity (R2>0.999) within test ranges. The lower limit of quantitation (LLOQ) was 5 ng/mL for As(III), As(V) and DMA, and 20 ng/mL for MMA. The system suitability and dilution values were within 6.5 % and 7.7 %. Subsequently, the developed and validated HPLC-ICP/MS method was also successfully applied to determine the arsenic speciation in dog plasma samples, and the recoveries for the spiked samples were in the range of 91.5–102.2 %. Therefore, this method could be applied to the evaluation of arsenic exposure, health effect assessment and other bio-monitoring studies in biological samples.

A Chemical Reaction Calculation and a Semi-Empirical Model for the Dynamic Simulation of an Electrolytic Reduction of Spent Oxide Fuels (산화물 사용후핵연료 전해환원 화학 반응 계산 및 동적 모사를 위한 반실험 모델)

  • Park, Byung-Heung;Hur, Jin-Mok;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.19-32
    • /
    • 2010
  • Electrolytic reduction technology is essential for the purpose of adopting pyroprocessing into spent oxide fuel as an alternative option in a back-end fuel cycle. Spent fuel consists of various metal oxides, and each metal oxide releases an oxygen element depending on its chemical characteristic during the electrolytic reduction process. In the present work, an electrolytic reduction behavior was estimated for voloxidized spent fuel based on the assumption that each metal-oxygen system is independent and behaves as an ideal solid solution. The electrolytic reduction was considered as a combination of a Li recovery and chemical reactions between the metal oxides such as uranium oxide and the produced Li metal. The calculated result revealed that most of the metal oxides were reduced by the process. It was evaluated that a reduced fraction of lanthanide oxides increased with a decreasing $Li_2O$ concentration. However, most of the lanthanides were expected to be stable in their oxide forms. In addition, a semi-empirical model for describing $U_3O_8$ electrolytic reduction behavior was proposed by considering Li diffusion and a chemical reaction between $U_3O_8$ and Li. Experimental data was used to determine model parameters and, then, the model was applied to calculate the reduction yield with time and to estimate the required time for a 99.9% reduction.

A Study of the Anxiety Levels of Hospitalized Psychiatric Patients in Terms of Length of Hospitalization (정신과 입원환자의 입원기간에 따른 불안정도에 관한 연구)

  • 김윤희
    • Journal of Korean Academy of Nursing
    • /
    • v.11 no.1
    • /
    • pp.45-63
    • /
    • 1981
  • This study was done to determine the relationship between the anxiety levels of hospitalized psychiatric patients and various influencing variables. The purpose of this study was to determine factors that may help hospitalized psychiatric patients to experience lower levels of anxiety in relation to changing situations and provide the basic data for a dynamic approach which is important in the field of modern psychiatric nursing that understands and analyses the meaning of patients behavior. The anxiety may produce stress, which is a common experience among all human beings. Patients may merely feel uncomfortable in the state of mild anxiety, however, the severe state could be an obstacle to treatment and recovery from disease. The anxiety of the psychiatric patient is a factor which greatly influencing the patient's behavior, so his disorderd behavior is an expression of defence or pathologically fixed behavior. According the psychiatric patient's anxiety at the time of admission is the concern of the health team. The nurse's special concern has to do with understanding and supporting the patient and meeting his individual needs by frequent close contact during the entire hospitalization period, compared to other teamembers the nurse's responsibility in this regard is greated. So this study emphasizes the necessity of creating conditions these, but above all the psychiatric nurse should create a therapeutic environment by not only regarding the patient's behavior or symptoms but understanding the meaning of them. The subjects of this study were 57 psychiatric patients selected from the K neuropsychiatric hospital located in Kunsan city. Data were collected twice from the same patients within a 24 hour period after admission and 10 days after admission. (September 18th to November 8th, 1980). The data collected method was through direct interview, and the interview time was 20 minutes for each patient. Data analysis included Item Analysis & Internal Consistency Reliability Tests, Percentages, t-test, analysis of variance and stepwise multiple regression analysis. The findings of this study were as follows. A. Test of Hypothesis a. Hypothesis 1 :“The anxiety level of psychiatric patients within 24 hours after admission will be higher than those of the same patients 10 days after admission,”was accepted. (t = 3. 15 ; p < 0.005) b. Hypothesi 2:“The more the number of admissions the higher the level of anxiety related to two categories”, was accepted. (affective anxiety: F = 5.50, p < 0.005, Somatic anxiety: F = 9.12, p <.

  • PDF

Fates of water and salts in non-aqueous solvents for directional solvent extraction desalination: Effects of chemical structures of the solvents

  • Choi, Ohkyung;Kim, Minsup;Cho, Art E.;Choi, Young Chul;Kim, Gyu Dong;Kim, Dooil;Lee, Jae Woo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.207-212
    • /
    • 2019
  • Non-aqueous solvents (NASs) are generally known to be barely miscible, and reactive with polar compounds, such as water. However, water can interact with some NASs, which can be used as a new means for water recovery from saline water. This study explored the fate of water and salt in NAS, when saline water is mixed with NAS. Three amine solvents were selected as NAS. They had the same molecular formula, but were differentiated by their molecular structures, as follows: 1) NAS 'A' having the hydrophilic group ($NH_2$) at the end of the straight carbon chain, 2) NAS 'B' with symmetrical structure and having the hydrophilic group (NH) at the middle of the straight carbon chain, 3) NAS 'C' having the hydrophilic group ($NH_2$) at the end of the straight carbon chain but possessing a hydrophobic ethyl branch in the middle of the structure. In batch experiments, 0.5 M NaCl water was blended with NASs, and then water and salt content in the NAS were individually measured. Water absorption efficiencies by NAS 'B' and 'C' were 3.8 and 10.7%, respectively. However, salt rejection efficiency was 98.9% and 58.2%, respectively. NAS 'A' exhibited a higher water absorption efficiency of 35.6%, despite a worse salt rejection efficiency of 24.7%. Molecular dynamic (MD) simulation showed the different interactions of water and salts with each NAS. NAS 'A' formed lattice structured clusters, with the hydrophilic group located outside, and captured a large numbers of water molecules, together with salt ions, inside the cluster pockets. NAS 'B' formed a planar-shaped cluster, where only some water molecules, but no salt ions, migrated to the NAS cluster. NAS 'C', with an ethyl group branch, formed a cluster shaped similarly to that of 'B'; however, the boundary surface of the cluster looked higher than that of 'C', due to the branch structure in solvent. The MD simulation was helpful for understanding the experimental results for water absorption and salt rejection, by demonstrating the various interactions between water molecules and the salts, with the different NAS types.

Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.

Analysis of the Characteristics of Biophilic Design in 『Soswaewon 48 Yeong』 (『소쇄원 48영』에 나타난 바이오필릭 디자인 특성분석)

  • Lee, Hyung-Sook;Choi, Mi-Seon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.4
    • /
    • pp.58-66
    • /
    • 2022
  • Biophilic design is an approach that attempts to connect people with nature to promote health, recovery and restoration processes. The purpose of this study was to systematically analyze restorative factors and characteristics of Soswaewon by applying a biophilic design analysis framework. To this end, a biophilic design classification system was established and content analysis and frequency analysis were conducted for 『Soswaewon 48 Young』. the ratio of plant words including bamboo, pine, and plum was the highest, and words related to dynamic water flow or interaction with water as well as various water types such as streams, waterfalls, and ponds were also high. appeared in rank. In addition, multisensory factors, seasonal changes, microclimatic factors, emotional elements that allow people to indirectly experience nature were expressed in various ways. The space layout and circulation provide opportunities to appreciate and experience the rich sensory resources of Soswaewon. In conclusion, this study confirmed the healing and restorative value of Soswaewon from the perspective of biophilic design, and it needs further research on the restorative factors of traditional spaces.

MDP(Markov Decision Process) Model for Prediction of Survivor Behavior based on Topographic Information (지형정보 기반 조난자 행동예측을 위한 마코프 의사결정과정 모형)

  • Jinho Son;Suhwan Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • In the wartime, aircraft carrying out a mission to strike the enemy deep in the depth are exposed to the risk of being shoot down. As a key combat force in mordern warfare, it takes a lot of time, effot and national budget to train military flight personnel who operate high-tech weapon systems. Therefore, this study studied the path problem of predicting the route of emergency escape from enemy territory to the target point to avoid obstacles, and through this, the possibility of safe recovery of emergency escape military flight personnel was increased. based problem, transforming the problem into a TSP, VRP, and Dijkstra algorithm, and approaching it with an optimization technique. However, if this problem is approached in a network problem, it is difficult to reflect the dynamic factors and uncertainties of the battlefield environment that military flight personnel in distress will face. So, MDP suitable for modeling dynamic environments was applied and studied. In addition, GIS was used to obtain topographic information data, and in the process of designing the reward structure of MDP, topographic information was reflected in more detail so that the model could be more realistic than previous studies. In this study, value iteration algorithms and deterministic methods were used to derive a path that allows the military flight personnel in distress to move to the shortest distance while making the most of the topographical advantages. In addition, it was intended to add the reality of the model by adding actual topographic information and obstacles that the military flight personnel in distress can meet in the process of escape and escape. Through this, it was possible to predict through which route the military flight personnel would escape and escape in the actual situation. The model presented in this study can be applied to various operational situations through redesign of the reward structure. In actual situations, decision support based on scientific techniques that reflect various factors in predicting the escape route of the military flight personnel in distress and conducting combat search and rescue operations will be possible.