• 제목/요약/키워드: dynamic loading test

검색결과 542건 처리시간 0.026초

FE Analysis for 1/3-scaled RC Building Structure under Biaxial Earthquake Loading

  • Lee, Joo-Beom;Rhee, In-Kyu
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.567-568
    • /
    • 2009
  • The CAMUS 2000-1 experimental program were performed in France to investigate of the 1/3-scaled reinforced concrete bearing walls behavior on the shaking table under biaxial earthquake loading. The nonlinear 3D finite element analysis of push over test and linear dynamic analysis under biaxial earthquake loading are investigated with the concrete damaged plasticity model using ABAQUS.

  • PDF

세립분 함량 변화에 따른 반복 동하중을 받는 시멘트 혼합토의 침하 및 강성 특성평가 (Characteristic evaluation of settlement and stiffness of cement-treated soils with the change of fines content under cyclic dynamic loading)

  • 김대상
    • 한국산학기술학회논문지
    • /
    • 제21권10호
    • /
    • pp.23-29
    • /
    • 2020
  • 철도 공용에 따른 반복 동하중을 지속적으로 경험하는 흙 구조물은 지속적인 침하가 발생한다. 본 논문에서는 흙 구조물을 구성하는 세립분 함량 변화에 따른 시멘트 혼합토의 침하 및 강성 특성을 반복 동하중 시험을 실시하여 평가하였다. 흙의 세립분 함량, 시멘트 함량, 양생일 수을 변화시켜가면서 총 18 케이스의 시험을 실시하였다. 동 시험결과로부터 시멘트 혼합토는 침하 측면에서 시멘트 함량 3% 이상 사용 시 세립분 함량이 높은 흙에서도 침하 저감 가능성이 크다는 것을 확인할 수 있었다. 또한, 시멘트 함량이 0% 에서 3 ~ 4% 로 증가 시 탄성 침하량은 1/4 수준으로, 소성 침하량은 1/6 수준으로 감소하는 것을 확인할 수 있었다. 시멘트 혼합토는 강성 측면에서 시멘트 함량 증가에 따라 회복탄성계수가 증가하는 경향을 보였다. 시멘트 함량 3% 이상 사용 시에는 흙의 세립분 함량 40% 수준에서도 철도 상부노반 다짐 강성 품질기준인 80 MPa을 만족하는 것을 확인할 수 있었다.

달착륙선 충격흡수장치용 알루미늄 허니콤의 Crush Strength에 관한 연구 (Study of Crush Strength of Aluminum Honeycomb for Shock Absorber of Lunar Lander)

  • 김신;이혁희;김현덕;박정선;임재혁;황도순
    • 항공우주시스템공학회지
    • /
    • 제4권3호
    • /
    • pp.1-5
    • /
    • 2010
  • Understanding the crushing behaviour of aluminum honeycombs under dynamic loading is useful for crash simulations of vehicles and for design of impacting energy absorbers. In the study of honeycomb crushing under quasi-static, dynamic loading, the most important parameter is crush strength. Crush strength is indicated to energy absorption characteristic of aluminum honeycomb. In this study, Using Finite Element Analysis carried out crush strength of hexagonal aluminum honeycomb then the results was compared with Quasi-static test. Consequently, Crush strength is different in quasi-static loading and dynamic loading about 16%.

  • PDF

A Case Study on the Effect of Damaged Expansion Joint for Safety Assessment of Highway Bridges

  • Kim, Kwang-Il;Chai, Won-Kyu;Lee, Myeong-Gu;Son, Young-Hyun
    • International Journal of Safety
    • /
    • 제9권2호
    • /
    • pp.16-21
    • /
    • 2010
  • In this study, the variations of transformed impact factors and load carrying capacity of highway bridges measured from the state of expansion joint are evaluated. the field loading tests were performed on the highway bridge with damaged expansion joint to investigate the variation of the load carrying capacity. From the field loading tests in case that damaged expansion joint exist or do not exist, the static displacements and dynamic displacements were measured, and TIF were calculated, respectively. dynamic test is performed in order to estimate dynamic displacement and TIF according to the level of damage of expansion joint. From the results of TIF, the load carrying capacity of highway bridges with damaged expansion joint were estimated.

Simulation of material failure behavior under different loading rates using molecular dynamics

  • Kim, Kunhwi;Lim, Jihoon;Kim, Juwhan;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • 제30권2호
    • /
    • pp.177-190
    • /
    • 2008
  • Material failure behavior is generally dependent on loading rate. Especially in brittle and quasi-brittle materials, rate dependent material behavior can be significant. Empirical formulations are often used to predict the rate dependency, but such methods depend on extensive experimental works and are limited by practical constraints of physical testing. Numerical simulation can be an effective means for extracting knowledge about rate dependent behavior and for complementing the results obtained by testing. In this paper, the failure behavior of a brittle material under different loading rates is simulated by molecular dynamics analysis. A notched specimen is modeled by sub-million particles with a normalization scheme. Lennard-Jones potential is used to describe the interparticle force. Numerical simulations are performed with six different loading rates in a direct tensile test, where the loading velocity is normalized to the ratio of the pseudo-sonic speed. As a consequence, dynamic features are achieved from the numerical experiments. Remarkable failure characteristics, such as crack surface interaction/crack arrest, branching, and void nucleation, vary in case of the six loading cases. These characteristics are interpreted by the energy concept approach. This study provides insight into the change in dynamic failure mechanism under different loading rates.

Numerical investigations on anchor channels under quasi-static and high rate loadings - Case of concrete edge breakout failure

  • Kusum Saini;Akanshu Sharma;Vasant A. Matsagar
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.499-511
    • /
    • 2023
  • Anchor channels are commonly used for façade, tunnel, and structural connections. These connections encounter various types of loadings during their service life, including high rate or impact loading. For anchor channels that are placed close and parallel to an edge and loaded in shear perpendicular to and towards the edge, the failure is often governed by concrete edge breakout. This study investigates the transverse shear behavior of the anchor channels under quasi-static and high rate loadings using a numerical approach (3D finite element analysis) utilizing a rate-sensitive microplane model for concrete as constitutive law. Following the validation of the numerical model against a test performed under quasi-static loading, the rate-sensitive static, and rate-sensitive dynamic analyses are performed for various displacement loading rates varying from moderately high to impact. The increment in resistance due to the high loading rate is evaluated using the dynamic increase factor (DIF). Furthermore, it is shown that the failure mode of the anchor channel changes from global concrete edge failure to local concrete crushing due to the activation of structural inertia at high displacement loading rates. The research outcomes could be valuable for application in various types of connection systems where a high rate of loading is expected.

마멸시험기의 하중부과 방법에 대한 비교 연구 (A study on the comparison in different loading methods for pin-on-disk wear test system)

  • 서만식;구영필;조용주
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.335-341
    • /
    • 1998
  • In this study, the dynamic characteritics in various loading methods for wear tester were investigated experimentally. As for the dead-weight, the pneumatic, and the hydraulic method, the load control performance against external disturbances was estimated under the several loading conditions like the different sliding speed, the varied normal load, and the misaligument. The hydraulic loading method showed the most stable loading performance of all the loading methods in the experiment.

  • PDF

Dynamic equivalent model of a SMART control rod drive mechanism for a seismic analysis

  • Ahn, Kwanghyun;Lee, Jae-Seon
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1834-1846
    • /
    • 2020
  • The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the development of a dynamic equivalent model of the SMART control rod drive mechanism that can be efficiently utilized for complicated analysis during the design of the SMART. A semi-empirical approach is used to develop the equivalent model; that is, the equivalent model is defined analytically and verified empirically. Two types of tests, dynamic characteristics tests and seismic loading tests, are conducted for the development and verification of the dynamic equivalent model, respectively. Acceleration response spectra from the seismic analysis based on the developed equivalent model show good agreement with those from the seismic loading tests.

DGPS 기법을 이용한 자정식 현수교의 정동적 변위응답 측정 및 분석 (Application of Differential GPS for the Displacement Measurement of Self-anchored Suspension Bridge under the Static and Dynamic Loading Cases)

  • 김형태;서주원
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1126-1132
    • /
    • 2009
  • Bridge structures are designed to support ordinary loadings such as vehicles, wind, temperature and current as well as unexpected loadings like earthquakes and storm. Especially, the displacement of Flexible bridges like an suspension bridge under ordinary loading conditions is necessary to be monitored. In case of long span bridges, there are some difficulties in monitoring the displacement of center of the main span using traditional laser displacement sensors. In this study, the static and dynamic displacement responses due to vehicle loadings were measured by DGPS(differential global positioning system) technique. The displacement response data were compared with data obtained from traditional laser displacement sensors so that the static and dynamic behavior of the bridge under vehicle loadings was examined and the applicability of the displacement response measurement using DGPS technique was verified. The static and dynamic loading test for an self-anchored suspension bridge, So-rok Bridge, was performed using vehicles. The displacement response from DGPS technique and that from laser displacement sensors of the bridge monitoring system were compared. The amplitude of white noise from DGPS based measurement was about 7 mm and that of laser displacement sensor based measurement was about 3 mm. On the other hand, dynamic behavior of the center of main span from DGPS based measurement showed better agreement with influence line of the bridge than that from laser displacement sensors. In addition, there were some irregular and discontinuous variation of data due to the instability of GPS receivers or frequent appearance of GPS satellites. Post-processing via the reference station close to an observation post provided by NGII(National Geographic Information Institute) will be a counter-plan for these defects.

변형률 게이지 측정원리를 이용한 충격 하중 센서의 개발 및 암석의 동적 압열 인장 실험에 적용 (Development of the Strain Measurement-based Impact Force Sensor and Its Application to the Dynamic Brazilian Tension Test of the Rock)

  • 민경조;오세욱;;전석원;조상호
    • 화약ㆍ발파
    • /
    • 제35권3호
    • /
    • pp.15-20
    • /
    • 2017
  • 발파 하중에 대한 암석의 동적 응답 특성을 획득하기 위해서는, 내충격 고감도의 충격하중센서가 필요하다. 이러한 충격 하중 센서는 석영(quartz) 하중셀, 압전소자(piezoelectric element), 변형률 게이지를 적용하여 제작되고 있으나, 석영 및 압전소자의 경우 고가이기 때문에, 충격하중가압시험과 같이 압력 센서의 손상이 빈번한 경우에는 제약이 따르게 된다. 본 연구에서는 원통형 압축셀에 변형률 게이지 측정원리를 적용한 내충격 고감도 하중센서를 개발하였다. 개발된 하중 센서는 Nonex Rock Cracker (NRC) 구동 고속충격 하중 장치를 이용한 화강암 동적 압열 인장 실험에 적용하여 동적하중이력의 측정에 적용되었다. 그 결과, NRC 구동 고속충격하중장치는 암석 강도의 중간 변형률 속도 의존성 연구에 적용 가능한 것으로 파악되었다.