• 제목/요약/키워드: dynamic hand gesture

검색결과 40건 처리시간 0.025초

신경회로망을 이용한 동적 손 제스처 인식에 관한 연구 (A Study on Dynamic Hand Gesture Recognition Using Neural Networks)

  • 조인석;박진현;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권1호
    • /
    • pp.22-31
    • /
    • 2004
  • This paper deals with the dynamic hand gesture recognition based on computer vision using neural networks. This paper proposes a global search method and a local search method to recognize the hand gesture. The global search recognizes a hand among the hand candidates through the entire image search, and the local search recognizes and tracks only the hand through the block search. Dynamic hand gesture recognition method is based on the skin-color and shape analysis with the invariant moment and direction information. Starting point and ending point of the dynamic hand gesture are obtained from hand shape. Experiments have been conducted for hand extraction, hand recognition and dynamic hand gesture recognition. Experimental results show the validity of the proposed method.

HSFE Network and Fusion Model based Dynamic Hand Gesture Recognition

  • Tai, Do Nhu;Na, In Seop;Kim, Soo Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3924-3940
    • /
    • 2020
  • Dynamic hand gesture recognition(d-HGR) plays an important role in human-computer interaction(HCI) system. With the growth of hand-pose estimation as well as 3D depth sensors, depth, and the hand-skeleton dataset is proposed to bring much research in depth and 3D hand skeleton approaches. However, it is still a challenging problem due to the low resolution, higher complexity, and self-occlusion. In this paper, we propose a hand-shape feature extraction(HSFE) network to produce robust hand-shapes. We build a hand-shape model, and hand-skeleton based on LSTM to exploit the temporal information from hand-shape and motion changes. Fusion between two models brings the best accuracy in dynamic hand gesture (DHG) dataset.

가이드라인을 이용한 동적 손동작 인식 (Dynamic Hand Gesture Recognition using Guide Lines)

  • 김건우;이원주;전창호
    • 전자공학회논문지CI
    • /
    • 제47권5호
    • /
    • pp.1-9
    • /
    • 2010
  • 일반적으로 동적 손동작 인식을 위해서는 전처리, 손 추적, 손 모양 검출의 단계가 필요하다. 본 논문에서는 전처리와 손 모양 검출 방법을 개선함으로써 성능을 향상시킨 동적 손동작 인식 방법을 제안한다. 전처리 단계에서는 동적테이블을 이용하여 노이즈제거 성능을 높이고, YCbCr 컬러공간을 이용한 기존의 피부색 검출 방식에서 피부색의 범위를 조절할 수 있도록 하여 피부색 검출 성능을 높인다. 특히 손 모양 검출 단계에서는 가이드라인을 이용하여 동적 손동작 인식의 요소인 시작이미지(Start Image)와 정지 이미지(Stop Image)를 검출하여 동적 손동작을 인식하기 때문에 학습예제를 사용한 손동작 인식 방법에 비해 인식 속도가 빠르다는 이점이 있다. 가이드라인이란 웹캠을 통해 입력되는 손의 모양과 비교하여 검출하기 위해 화면에 출력하는 손 모양의 라인이다. 가이드라인을 이용한 동적 손동작 인식 방법의 성능을 평가하기 위해 웹캠을 사용하여 복잡한 배경과 단순한 배경으로 구분된 9가지 동영상을 대상으로 실험하였다. 그 결과 CPU 점유율이 낮고, 메모리 사용량도 적기 때문에 시스템 부하가 높은 환경에 효과적임을 알 수 있었다.

Hybrid HMM for Transitional Gesture Classification in Thai Sign Language Translation

  • Jaruwanawat, Arunee;Chotikakamthorn, Nopporn;Werapan, Worawit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1106-1110
    • /
    • 2004
  • A human sign language is generally composed of both static and dynamic gestures. Each gesture is represented by a hand shape, its position, and hand movement (for a dynamic gesture). One of the problems found in automated sign language translation is on segmenting a hand movement that is part of a transitional movement from one hand gesture to another. This transitional gesture conveys no meaning, but serves as a connecting period between two consecutive gestures. Based on the observation that many dynamic gestures as appeared in Thai sign language dictionary are of quasi-periodic nature, a method was developed to differentiate between a (meaningful) dynamic gesture and a transitional movement. However, there are some meaningful dynamic gestures that are of non-periodic nature. Those gestures cannot be distinguished from a transitional movement by using the signal quasi-periodicity. This paper proposes a hybrid method using a combination of the periodicity-based gesture segmentation method with a HMM-based gesture classifier. The HMM classifier is used here to detect dynamic signs of non-periodic nature. Combined with the periodic-based gesture segmentation method, this hybrid scheme can be used to identify segments of a transitional movement. In addition, due to the use of quasi-periodic nature of many dynamic sign gestures, dimensionality of the HMM part of the proposed method is significantly reduced, resulting in computational saving as compared with a standard HMM-based method. Through experiment with real measurement, the proposed method's recognition performance is reported.

  • PDF

A Notation Method for Three Dimensional Hand Gesture

  • Choi, Eun-Jung;Kim, Hee-Jin;Chung, Min-K.
    • 대한인간공학회지
    • /
    • 제31권4호
    • /
    • pp.541-550
    • /
    • 2012
  • Objective: The aim of this study is to suggest a notation method for three-dimensional hand gesture. Background: To match intuitive gestures with commands of products, various studies have tried to derive gestures from users. In this case, various gestures for a command are derived due to various users' experience. Thus, organizing the gestures systematically and identifying similar pattern of them have become one of important issues. Method: Related studies about gesture taxonomy and notating sign language were investigated. Results: Through the literature review, a total of five elements of static gesture were selected, and a total of three forms of dynamic gesture were identified. Also temporal variability(reputation) was additionally selected. Conclusion: A notation method which follows a combination sequence of the gesture elements was suggested. Application: A notation method for three dimensional hand gestures might be used to describe and organize the user-defined gesture systematically.

삼차원 핸드 제스쳐 디자인 및 모델링 프레임워크 (A Framework for 3D Hand Gesture Design and Modeling)

  • 권두영
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.5169-5175
    • /
    • 2013
  • 본 논문에서는 삼차원 핸드 제스쳐 디자인 및 모델링을 위한 프레임워크를 기술한다. 동작 인식, 평가, 등록을 지원하기위해 동적시간정합(Dynamic Time Warping, 이하 DTW)과 은닉마코브모델 (Hidden Markov Mode, 이하 HMM)을 활용 하였다. HMM은 제스쳐 인식에 활용되며 또한 제스쳐 디자인과 등록 과정에 활용된다. DTW은 HMM 훈련 데이터가 부족한 경우 제스쳐 인식에 활용되고, 수행된 동작이 기준 동작의 차이를 평가하는 데에 활용된다. 동작 움직임에 나타나는 위치 정보와 관성 정보를 모두 획득하기 위해 바디센서와 시각센서를 혼합하여 동작을 감지하였다. 18개의 예제 손동작을 디자인하고 다양한 상황에서 제안된 기법을 테스트하였다. 또한 제스쳐 수행시 나타나는 사용자간 다양성에 대해 토론한다.

연속DP와 칼만필터를 이용한 손동작의 추적 및 인식 (Tracking and Recognizing Hand Gestures using Kalman Filter and Continuous Dynamic Programming)

  • 문인혁;금영광
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(3)
    • /
    • pp.13-16
    • /
    • 2002
  • This paper proposes a method to track hand gesture and to recognize the gesture pattern using Kalman filter and continuous dynamic programming (CDP). The positions of hands are predicted by Kalman filter, and corresponding pixels to the hands are extracted by skin color filter. The center of gravity of the hands is the same as the input pattern vector. The input gesture is then recognized by matching with the reference gesture patterns using CDP. From experimental results to recognize circle shape gesture and intention gestures such as “Come on” and “Bye-bye”, we show the proposed method is feasible to the hand gesture-based human -computer interaction.

  • PDF

A Dynamic Hand Gesture Recognition System Incorporating Orientation-based Linear Extrapolation Predictor and Velocity-assisted Longest Common Subsequence Algorithm

  • Yuan, Min;Yao, Heng;Qin, Chuan;Tian, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4491-4509
    • /
    • 2017
  • The present paper proposes a novel dynamic system for hand gesture recognition. The approach involved is comprised of three main steps: detection, tracking and recognition. First, the gesture contour captured by a 2D-camera is detected by combining the three-frame difference method and skin-color elliptic boundary model. Then, the trajectory of the hand gesture is extracted via a gesture-tracking algorithm based on an occlusion-direction oriented linear extrapolation predictor, where the gesture coordinate in next frame is predicted by the judgment of current occlusion direction. Finally, to overcome the interference of insignificant trajectory segments, the longest common subsequence (LCS) is employed with the aid of velocity information. Besides, to tackle the subgesture problem, i.e., some gestures may also be a part of others, the most probable gesture category is identified through comparison of the relative LCS length of each gesture, i.e., the proportion between the LCS length and the total length of each template, rather than the length of LCS for each gesture. The gesture dataset for system performance test contains digits ranged from 0 to 9, and experimental results demonstrate the robustness and effectiveness of the proposed approach.

Effective Hand Gesture Recognition by Key Frame Selection and 3D Neural Network

  • Hoang, Nguyen Ngoc;Lee, Guee-Sang;Kim, Soo-Hyung;Yang, Hyung-Jeong
    • 스마트미디어저널
    • /
    • 제9권1호
    • /
    • pp.23-29
    • /
    • 2020
  • This paper presents an approach for dynamic hand gesture recognition by using algorithm based on 3D Convolutional Neural Network (3D_CNN), which is later extended to 3D Residual Networks (3D_ResNet), and the neural network based key frame selection. Typically, 3D deep neural network is used to classify gestures from the input of image frames, randomly sampled from a video data. In this work, to improve the classification performance, we employ key frames which represent the overall video, as the input of the classification network. The key frames are extracted by SegNet instead of conventional clustering algorithms for video summarization (VSUMM) which require heavy computation. By using a deep neural network, key frame selection can be performed in a real-time system. Experiments are conducted using 3D convolutional kernels such as 3D_CNN, Inflated 3D_CNN (I3D) and 3D_ResNet for gesture classification. Our algorithm achieved up to 97.8% of classification accuracy on the Cambridge gesture dataset. The experimental results show that the proposed approach is efficient and outperforms existing methods.

손동작 인식 시스템을 위한 동적 학습 알고리즘 (Dynamic Training Algorithm for Hand Gesture Recognition System)

  • 김문환;황선기;배철수
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권2호
    • /
    • pp.51-56
    • /
    • 2009
  • 본 논문에서는 카메라-투영 시스템에서 비전에 기반을 둔 손동작 인식을 위한 새로운 알고리즘을 제안하고 있다. 제안된 인식방법은 정적인 손동작 분류를 위하여 푸리에 변환을 사용하였다. 손 분할은 개선된 배경 제거 방법을 사용하였다. 대부분의 인식방법들이 같은 피검자에 의해 학습과 실험이 이루어지고 상호작용에 이전에 학습단계가 필요하다. 그러나 학습되지 않은 다양한 상황에 대해서도 상호작용을 위해 동작 인식이 요구된다. 그러므로 본 논문에서는 인식 작업 중에 검출된 불완전한 동작들을 정정하여 적용하였다. 그 결과 사용자와 독립되게 동작을 인식함으로써 새로운 사용자에게 신속하게 온라인 적용이 가능하였다.

  • PDF