• Title/Summary/Keyword: dynamic geometric environment

Search Result 43, Processing Time 0.032 seconds

A study on the use of continuous spectrum in problem solving in a dynamic geometry environment (동적 기하 환경의 문제 해결 과정에서 연속 스펙트럼 활용에 대한 소고)

  • Heo, Nam Gu
    • The Mathematical Education
    • /
    • v.60 no.4
    • /
    • pp.543-554
    • /
    • 2021
  • The dynamic geometric environment plays a positive role in solving students' geometric problems. Students can infer invariance in change through dragging, and help solve geometric problems through the analysis method. In this study, the continuous spectrum of the dynamic geometric environment can be used to solve problems of students. The continuous spectrum can be used in the 'Understand the problem' of Polya(1957)'s problem solving stage. Visually representation using continuous spectrum allows students to immediately understand the problem. The continuous spectrum can be used in the 'Devise a plan' stage. Students can define a function and explore changes visually in function values in a continuous range through continuous spectrum. Students can guess the solution of the optimization problem based on the results of their visual exploration, guess common properties through exploration activities on solutions optimized in dynamic geometries, and establish problem solving strategies based on this hypothesis. The continuous spectrum can be used in the 'Review/Extend' stage. Students can check whether their solution is equal to the solution in question through a continuous spectrum. Through this, students can look back on their thinking process. In addition, the continuous spectrum can help students guess and justify the generalized nature of a given problem. Continuous spectrum are likely to help students problem solving, so it is necessary to apply and analysis of educational effects using continuous spectrum in students' geometric learning.

Nonlinear dynamic response of axially moving GPLRMF plates with initial geometric imperfection in thermal environment under low-velocity impact

  • G.L. She;J.P. Song
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.357-370
    • /
    • 2024
  • Due to the fact that the mechanism of the effects of temperature and initial geometric imperfection on low-velocity impact problem of axially moving plates is not yet clear, the present paper is to fill the gap. In the present paper, the nonlinear dynamic behavior of axially moving imperfect graphene platelet reinforced metal foams (GPLRMF) plates subjected to lowvelocity impact in thermal environment is analyzed. The equivalent physical parameters of GPLRMF plates are estimated based on the Halpin-Tsai equation and the mixing rule. Combining Kirchhoff plate theory and the modified nonlinear Hertz contact theory, the nonlinear governing equations of GPLRMF plates are derived. Under the condition of simply supported boundary, the nonlinear control equation is discretized with the help of Gallekin method. The correctness of the proposed model is verified by comparison with the existing results. Finally, the time history curves of contact force and transverse center displacement are obtained by using the fourth order Runge-Kutta method. Through detailed parameter research, the effects of graphene platelet (GPL) distribution mode, foam distribution mode, GPL weight fraction, foam coefficient, axial moving speed, prestressing force, temperature changes, damping coefficient, initial geometric defect, radius and initial velocity of the impactor on the nonlinear impact problem are explored. The results indicate that temperature changes and initial geometric imperfections have significant impacts.

Functional Definitions in DGS Environments. (DGS 동적 기하에서의 새로운 함수적 관점의 정의)

  • 김화경;조한혁
    • The Mathematical Education
    • /
    • v.43 no.2
    • /
    • pp.177-186
    • /
    • 2004
  • In this paper, we introduce new functional definitions for school geometry based on DGS (dynamic geometry system) teaching-learning environment. For the vertices forming a geometric figure, we first consider the relationship between the independent vertices and dependent vertices, and using this relationship and educational considerations in DGS, we introduce functional definitions for the geometric figures in terms of its independent vertices. For this purpose, we design a new DGS called JavaMAL MicroWorld. Based on the needs of new definitions in DGS environment for the student's construction activities in learning geometry, we also design a new DGS based geometry curriculum in which the definitions of the school geometry are newly defined and reconnected in a new way. Using these funct onal definitions, we have taught the new geometry contents emphasizing the sequential expressions for the student's geometric activities.

  • PDF

Understanding Variables and Enhancing the Level of Generalization in Problem Solving Utilized Dynamic Geometry Environment (동적 기하 환경을 활용한 문제 해결 과정에서 변수 이해 및 일반화 수준 향상에 관한 사례연구)

  • Ban, Eun Seob;Lew, Hee Chan
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.1
    • /
    • pp.89-112
    • /
    • 2017
  • In this study we have analyzed processes of generalization in which students have geometrically solved cubic equation $x^3+ax=b$, regarding geometrical solution of cubic equation $x^3+4x=32$ as examples. The result of this research indicate that students could especially re-interpret the geometric solution of the given cubic equation via dynamically understanding the variables in dynamic geometry environment. Furthermore, participants could simultaneously re-interpret the given geometric solution and then present a different geometric solutions of $x^3+ax=b$, so that the level of generalization could be improved. In conclusion, the study could provide useful pedagogical implications in school mathematics that the dynamic geometry environment performs significant function as a means of students-centered exploration when understanding variables and enhancing the level of generalization in problem solving.

Construction of Elementary Functions through Proportions on the Dynamic Environment (역동적 기하 환경에서 비례를 이용한 중학교 함수의 작도)

  • Lew, Hee-Chan;Yoon, O-Kyo
    • School Mathematics
    • /
    • v.13 no.1
    • /
    • pp.19-36
    • /
    • 2011
  • This study provides middle school students with an opportunity to construct elementary functions with dynamic geometry based on the proportion between lengths of triangle to activate students' intuition in handling elementary algebraic functions and their geometric properties. In addition, this study emphasizes the process of justification about the choice of students' construction method to improve students' deductive reasoning ability. As a result of the pilot lesson study, this paper shows the characteristics of the students' construction process of elementary functions and the roles the teacher plays in the process.

  • PDF

Nonlinear harmonic resonances of spinning graphene platelets reinforced metal foams cylindrical shell with initial geometric imperfections in thermal environment

  • Yi-Wen Zhang;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.405-417
    • /
    • 2023
  • This paper reveals theoretical research to the nonlinear dynamic response and initial geometric imperfections sensitivity of the spinning graphene platelets reinforced metal foams (GPLRMF) cylindrical shell under different boundary conditions in thermal environment. For the theoretical research, with the framework of von-Karman geometric nonlinearity, the GPLRMF cylindrical shell model which involves Coriolis acceleration and centrifugal acceleration caused by spinning motion is assumed to undergo large deformations. The coupled governing equations of motion are deduced using Euler-Lagrange principle and then solved by a combination of Galerkin's technique and modified Lindstedt Poincare (MLP) model. Furthermore, the impacts of a set of parameters including spinning velocity, initial geometric imperfections, temperature variation, weight fraction of GPLs, GPLs distribution pattern, porosity distribution pattern, porosity coefficient and external excitation amplitude on the nonlinear harmonic resonances of the spinning GPLRMF cylindrical shells are presented.

A Robust Real-Time Mobile Robot Self-Localization with ICP Algorithm

  • Sa, In-Kyu;Baek, Seung-Min;Kuc, Tae-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2301-2306
    • /
    • 2005
  • Even if there are lots of researches on localization using 2D range finder in static environment, very few researches have been reported for robust real-time localization of mobile robot in uncertain and dynamic environment. In this paper, we present a new localization method based on ICP(Iterative Closest Point) algorithm for navigation of mobile robot under dynamic or uncertain environment. The ICP method is widely used for geometric alignment of three-dimensional models when an initial estimate of the relative pose is known. We use the method to align global map with 2D scanned data from range finder. The proposed algorithm accelerates the processing time by uniformly sampling the line fitted data from world map of mobile robot. A data filtering method is also used for threshold of occluded data from the range finder sensor. The effectiveness of the proposed method has been demonstrated through computer simulation and experiment in an office environment.

  • PDF

Development and Application of Korean Dummy Models (한국인 인체 모델의 개발과 적용)

  • Lee, Sang-Cheol;Son, Gwon;Kim, Seong-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2002
  • Human dummies are essential tools in the development of such products as vehicle have been actively used not only in reach and view field tests. but also in impact perception evaluations. This study attempted to obtain geometric and dynamic model body segments from Korean anthropometric data. The investigation focused on the de both human and dummy for the geometric and inertial properties. The dynamic modeli being suggested is based on rigid body dynamics using fifteen individual body segments by joins. The segments are connected at the locations representing the physical joint body so that each segment has its mass and moment of inertia. For visual three-dimensional graphic was used for easier implementation of the dumn applications. For applications, proposed Korean dummies Were used in dynamic crash and driver's view and reach test modules were developed in virtual environment.

Construction of Geometric Learning Contents Using the Experimental Computer Software (탐구형 소프트웨어를 활용한 기하학습내용의 구성방안 탐색)

  • 류희찬;유공주;조민식
    • Journal of Educational Research in Mathematics
    • /
    • v.10 no.1
    • /
    • pp.139-159
    • /
    • 2000
  • The experimental software such as Cabri II, The Geometer's Sketchpad, etc. provides dynamic environment which construct and explore geometric objects interactively and inductively. It has the effects on mathematics itself differently from other technologies that are used in instruction. What is its characteristics\ulcorner What are the educational implication of it for the learning of geometry\ulcorner How is mental reasoning of geometric problems changed by transformation of the means of representation and the environment to manipulate them\ulcorner In this study, we answer these questions through the review of the related literatures and the analysis of textbooks, teaching materials using it and curricular materials. Also, we identify implications about how the criteria for choosing geometic content and the ways of constructing context, for orchestrating the students' exploration with the secondary geometry curriculum, can be changed.

  • PDF

The Impact of Dynamic Geometry Software on High School Students' Problem Solving of the Conic Sections (동적기하가 원뿔곡선 문제 해결에 미치는 영향)

  • Hong, Seong-Kowan;Park, Cheol-Ho
    • The Mathematical Education
    • /
    • v.46 no.3
    • /
    • pp.331-349
    • /
    • 2007
  • This study aims to improve the teaching and learning method on the conic sections. To do that the researcher analyzed the impact of dynamic geometry software on students' problem solving of the conic sections. Students often say, "I have solved this kind of problem and remember hearing the problem solving process of it before." But they often are not able to resolve the question. Previous studies suggest that one of the reasons can be students' tendency to approach the conic sections only using algebra or analytic geometry without the geometric principle. So the researcher conducted instructions based on the geometric and historico-genetic principle on the conic sections using dynamic geometry software. The instructions were intended to find out if the experimental, intuitional, mathematic problem solving is necessary for the deductive process of solving geometric problems. To achieve the purpose of this study, the researcher video taped the instruction process and converted it to digital using the computer. What students' had said and discussed with the teacher during the classes was checked and their behavior was analyzed. That analysis was based on Branford's perspective, which included three different stage of proof; experimental, intuitive, and mathematical. The researcher got the following conclusions from this study. Firstly, students preferred their own manipulation or reconstruction to deductive mathematical explanation or proving of the problem. And they showed tendency to consider it as the mathematical truth when the problem is dealt with by their own manipulation. Secondly, the manipulation environment of dynamic geometry software help students correct their mathematical misconception, which result from their cognitive obstacles, and get correct ones. Thirdly, by using dynamic geometry software the teacher could help reduce the 'zone of proximal development' of Vigotsky.

  • PDF