• Title/Summary/Keyword: dynamic finite element

Search Result 2,928, Processing Time 0.03 seconds

Efficient finite element model for dynamic analysis of laminated composite beam

  • Naushad Alam, M.;Upadhyay, Nirbhay Kr.;Anas, Mohd.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.471-488
    • /
    • 2012
  • An efficient one dimensional finite element model has been presented for the dynamic analysis of composite laminated beams, using the efficient layerwise zigzag theory. To meet the convergence requirements for the weak integral formulation, cubic Hermite interpolation is used for the transverse displacement ($w_0$), and linear interpolation is used for the axial displacement ($u_0$) and shear rotation (${\psi}_0$). Each node of an element has four degrees of freedom. The expressions of variationally consistent inertia, stiffness matrices and the load vector are derived in closed form using exact integration. The formulation is validated by comparing the results with the 2D-FE results for composite symmetric and sandwich beams with various end conditions. The employed finite element model is free of shear locking. The present zigzag finite element results for natural frequencies, mode shapes of cantilever and clamped-clamped beams are obtained with a one-dimensional finite element codes developed in MATLAB. These 1D-FE results for cantilever and clamped beams are compared with the 2D-FE results obtained using ABAQUS to show the accuracy of the developed MATLAB code, for zigzag theory for these boundary conditions. This comparison establishes the accuracy of zigzag finite element analysis for dynamic response under given boundary conditions.

The mixed finite element for quasi-static and dynamic analysis of viscoelastic circular beams

  • Kadioglu, Fethi;Akoz, A. Yalcin
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.735-752
    • /
    • 2003
  • The quasi-static and dynamic responses of a linear viscoelastic circular beam on Winkler foundation are studied numerically by using the mixed finite element method in transformed Laplace-Carson space. This element VCR12 has 12 independent variables. The solution is obtained in transformed space and Schapery, Dubner, Durbin and Maximum Degree of Precision (MDOP) transform techniques are employed for numerical inversion. The performance of the method is presented by several quasi-static and dynamic example problems.

Development of Helical Rod Finite Element for the Dynamic Analysis of Cylindrical Springs (원통형 스프링의 동특성 해석을 위한 헬리컬 로드 유한요소 개발)

  • 김도중;이덕영
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.544-553
    • /
    • 1999
  • A 3-dimensional helical rod finite element is devloped for the dynamic analysis of cylindrical springs. Element matrices are formulated using the Galerkin's method, and an exact static deflection curve is used as a shape function. Because the resultant mass and stiffness matrices of the model are symmetric, effective direct solution method can easily be applied for analysing dynamic behavior of springs. The model is used to analyze the dynamic characteristics of a typical automotive valve spring. The effectiveness of the developed helical rod element is verified by comparing the results of the proposed method with those of a classical theory and experiments. The helical element developed in this study is superior to a straight beam element and a 2-dimensional curved beam element for this problem.

  • PDF

Transient Dynamic Analysis of Scroll Compressor Crankshaft Using Finite Element-Transfer Matrix Method (유한요소-전달행렬법에 의한 스크롤 압축기 크랭크축의 과도 동적 해석)

  • 김태종
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.97-106
    • /
    • 2000
  • The dynamic behavior of crankshaft-bearing system in scroll compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element formulation is proposed including the field element for a shaft section and the point element at balancer weight locations, bearing locations, etc., whereas the conventional method is used with the elements. The Houbolt method is used to consider the time march for the integration of the system equations. The linear stiffness and damping coefficients are calculated for a finite cylindrical fluid-film bearing by solving the Reynolds equation, using finite difference method. The orbital response of crankshaft supported on the linear bearing model is obtained, considering balancer weights of motor rotor. And, the steady state displacement of crankshaft are compared with a variation in balancer weight. The loci of crankshaft at bearing locations are composed of the synchronous whirl component and the non-synchronous whirl component.

  • PDF

The Numerical Modelling and Dynamic Collapse Analysis of the Rectangular Tube (사각관의 수치 모델링 및 동적 붕괴 해석)

  • 강신유;한동철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.42-48
    • /
    • 1993
  • In this paper, dynamic collapse behavior of the rectangular tube under impact loading is anlayzed using nonlinear finite element method of shell element. In case of shell element formulation using corotational element coordinates system, dynamic collapse behavior is analyzed without initial imperfection, and with initial imperfection. This paper reveals that the collapse of a rectangular tue without initial imperfection is caused by an error of transformation of the corotational coordinates system.

  • PDF

Dynamic Stability Analysis of Tapered Thick Plate according opening position (개구부의 위치변화에 따른 변단면 후판의 동적 안정해석)

  • Kim Il-Jung;Lee Yong-Soo;Oh Soog-Kyoung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.955-962
    • /
    • 2006
  • This paper has the objects of deciding dynamic instability regions of thick plates on Pasternak foundation by finite element method and providing kinematic design data for mats and slabs of building structures. In this paper, dynamic stability analysis of tapered opening thick plate is done by use of Serendipity finite element with 8 nodes considering shearing strain of plate. To verify this finite element method, buckling stress and natural frequencies of thick pate with or without in-plane stress are compared with existing solutions. The results are as follow that this finite element solutions with 4x4 meshes are shown the error of maximum 0.56% about existing solutions, and obtained dynamic instability graph according with variation of opening positions.

  • PDF

A Study on the Stochastic Finite Element Method for Dynamic Problem of Nonlinear Continuum

  • Wang, Qing;Bae, Dong-Myung
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.2
    • /
    • pp.1-15
    • /
    • 2008
  • The main idea of this paper introduce stochastic structural parameters and random dynamic excitation directly into the dynamic functional variational formulations, and developed the nonlinear dynamic analysis of a stochastic variational principle and the corresponding stochastic finite element method via the weighted residual method and the small parameter perturbation technique. An interpolation method was adopted, which is based on representing the random field in terms of an interpolation rule involving a set of deterministic shape functions. Direct integration Wilson-${\theta}$ Method was adopted to solve finite element equations. Numerical examples are compared with Monte-Carlo simulation method to show that the approaches proposed herein are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.

Precise dynamic finite element elastic-plastic seismic analysis considering welds for nuclear power plants

  • Kim, Jong-Sung;Jang, Hyun-Su
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2550-2563
    • /
    • 2022
  • This study performed a precise dynamic finite element time history elastic-plastic seismic analysis considering the welds, which have been not considered in design stage, on the nuclear components subjected to severe seismic loadings such as beyond-design basis earthquakes for sustainable nuclear power plants. First, the dynamic finite element elastic-plastic seismic analysis was performed for a general design practice that does not take into account the welds of the pressurizer surge line system, one of safety class I components in nuclear power plants, and then the reference values for the accumulated equivalent plastic strain, equivalent plastic strain, and von Mises effective stress were set. Second, the dynamic finite element elastic-plastic seismic analyses were performed for the case of considering only the mechanical strength over-mismatch of the welds as well as for the case of considering both the strength over-mismatch and welding residual strain. Third, the effects of the strength over-mismatch and welding residual strain were analyzed by comparing the finite element analysis results with the reference values. As a result of the comparison, it was found that not considering the strength over-mismatch may lead to conservative assessment results, whereas not considering the welding residual strain may be non-conservative.

Finite element model updating effect on the structural behavior of long span concrete highway bridges

  • Altunisik, A.C.;Bayraktar, A.
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.745-765
    • /
    • 2014
  • In this paper, it is aimed to determine the finite element model updating effects on the structural behavior of long span concrete highway bridges. Birecik Highway Bridge located on the 81stkm of Sanliurfa-Gaziantep state highway over Firat River in Turkey is selected as a case study. The bridge consist of fourteen spans, each of span has a nearly 26m. The total bridge length is 380m and width of bridge is 10m. Firstly, the analytical dynamic characteristics such as natural frequencies and mode shapes are attained from finite element analyses using SAP2000 program. After, experimental dynamic characteristics are specified from field investigations using Operational Modal Analysis method. Enhanced Frequency Domain Decomposition method in the frequency domain is used to extract the dynamic characteristics such as natural frequencies, mode shapes and damping ratios. Analytically and experimentally identified dynamic characteristics are compared with each other and finite element model of the bridge is updated to reduce the differences by changing of some uncertain parameters such as section properties, damages, boundary conditions and material properties. At the end of the study, structural performance of the highway bridge is determined under dead load, live load, and dynamic loads before and after model updating to specify the updating effect. Displacements, internal forces and stresses are used as comparison parameters. From the study, it is seen that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %46.7 to %2.39 by model updating. A good harmony is found between mode shapes after finite element model updating. It is demonstrated that finite element model updating has an important effect on the structural performance of the arch type long span highway bridge. Maximum displacements, shear forces, bending moments and compressive stresses are reduced %28.6, %21.0, %19.22, and %33.3-20.0, respectively.

Finite Element Modeling of Low Density Polyurethane Foam Material (저밀도 폴리우레탄 포옴재료의 유한요소 모델링)

  • 김원택;최형연
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.183-188
    • /
    • 1996
  • The compressive stress-strain response of Low Density Polyurethane foam material is modeled using the finite element method. A constitutive equation which include experimental constants based on quasi-static and dynamic uniaxial compression test is proposed. Impact test with different impactor masses and velocities are performed to verify the proposed model. The comparison between impact test and finite element analysis shows good agreements.

  • PDF