• Title/Summary/Keyword: dynamic feedback approach

Search Result 144, Processing Time 0.026 seconds

Modeling and $H_{\infty}$ Optimal Control Design for a Hydraulic Unit in ESP (ESP 유압 유니트의 모델링 및 $H_{\infty}$ 최적제어)

  • You, Seung-Han;Hahn, Jin-Oh;Cho, Young-Man;Lee, Kyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.733-738
    • /
    • 2004
  • This paper deals with feedback control of a hydraulic unit for direct yaw moment control, a method used to actively maintain the dynamic stability of an automobile. The uncertain parameters and complex structure naturally call for empirical modeling of the hydraulic unit, which readily results in a control-oriented model with high fidelity. The identified model is cross-validated against experimental data under various conditions, which helps to establish model uncertainty. Then, the $H_{\infty}$ optimization technique is employed to synthesize a controller with guaranteed robust stability and performance against the model uncertainty. The performance of the synthesized controller is verified using experimental results, which shows the viability of the proposed approach in a real-world application.

  • PDF

A Study on the Real Time Adaptive Controller for SCARA Robot Using TMS320C31 Chip (TMS320C31 칩을 사용한 스카라 로봇의 실시간 적응제어데 관한 연구)

  • 김용태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.79-84
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C31) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Design of a Real Time Adaptive Controller for Industrial Robot Using Digital Signal Processor (디지털 신호처리기를 사용한 산업용 로버트의 실시간 적응제어기 설계)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.26-37
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller. feedback controller. and PID type time-varying auxiliary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require a an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

NEW MODELING AND CONTROL OF AN ASYMMETRIC HYDRAULIC ACTIVE SUSPENSION SYSTEM

  • Kim, Wanil;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.490-495
    • /
    • 1998
  • In this paper an asymmetric hydraulic actuator which consists of single acting cylinder and servo valve is modeled for a quarter car active suspension system. This model regards the force as an internal state rather than a control input. The control input of the model is the sum of oil flows that pass through the valve's orifices. The resulting dynamic equation in the state space ap-pears a feedback connection of a nominal linear time in-variant term with a nonlinear bounded uncertain block. Since this model makes it possible to eliminate the force control phase, analysis and controller design are made straightforward and simple. Well known LQR method is then applied. Simulation and test rig experiment show the effectiveness of this approach in modeling and control.

  • PDF

Exploring Knowledge Processing in a Social Complex Adaptive Organization : Wikipedia through the Lens of the LIFE Model

  • Faucher, Jean-Baptiste P.L.;Everett, Andre M.;Lawson, Rob
    • Journal of Information Technology Applications and Management
    • /
    • v.18 no.1
    • /
    • pp.15-39
    • /
    • 2011
  • A deeper understanding of how organizations behave as social complex adaptive systems is needed. In this paper we demonstrate how the Leadership Invigorating Flows of Energies model can help with this understanding. The model highlights the role of emergent leadership as a force encouraging the creation, diffusion, and utilization of knowledge through self-organizing mechanisms. We illustrate our approach by examining Wikipedia and show how it can be described as a social CAS. Our analysis of Wikipedia describes how emerging intrapreneurship behaviors result in dynamic flows of knowledge and self-organizing feedback mechanisms across the organization. We provide implications for organization studies and present evidence to support claims made by advocates of complexity theory. We conclude by proposing that Wikipedia can be seen as a new form of organization, and finish with a brief note highlighting a possible way forward.

Hybrid Structural Control System Design Using Preference-Based Optimization (선호도 기반 최적화 방법을 사용한 복합 구조 제어 시스템 설계)

  • Park, Won-Suk;Park, Kwan-Soon;Koh, Hyun-Moo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.401-408
    • /
    • 2006
  • An optimum design method for hybrid control systems is proposed in this study. By considering both active and passive control systems as a combined or a hybrid system, the optimization of the hybrid system can be achieved simultaneously. In the proposed approach, we consider design parameters of active control devices and the elements of the feedback gain matrix as design variables for the active control system. Required quantity of the added dampers are also treated as design variables for the passive control system. In the proposed method, the cost of both active and passive control devices, the required control efforts and dynamic responses of a target structure are selected as objective functions to be minimized. To effectively address the multi-objective optimization problem, we adopt a preference-based optimization model and apply a genetic algorithm as a numerical searching technique. As an example to verify the validity of the proposed optimization technique, a wind-excited 20-storey building with hybrid control systems is used and the results are presented.

  • PDF

A Study on Performance Analysis of Articulated Robot System for Smart Factory Based on Monitoring Simulator

  • Kim, Hee Jin;Kim, Dong-ho;Jung, Kum-jun;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.889-896
    • /
    • 2020
  • We describe a new approach to the analyze the control performance of robotic manipulator based on the monitoring system. The structure of monitoring simulator is consist of seven modes such as control state mode, coordinate mode, input/output mode, program mode, parameters mode, and track mode. The applied control algorithme consists of an time varying feed-forward and feedback controller. The proposed scheme is simple in structure, fast in computation, and suitable for real-time implimemtation. Moreover, this scheme does not require any accurate dynamic modeling and values of parameters. Performance of the proposed monitoring system is illustrated by simulation and experiment for robot manipulator with six degrees of freedom.

qPALS: Quality-Aware Synchrony Protocol for Distributed Real-Time Systems

  • Kang, Woochul;Sha, Lui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3361-3377
    • /
    • 2014
  • Synchronous computing models provided by real-time synchrony protocols, such as TTA [1] and PALS [2], greatly simplify the design, implementation, and verification of real-time distributed systems. However, their application to real systems has been limited since their assumptions on underlying systems are hard to satisfy. In particular, most previous real-time synchrony protocols hypothesize the existence of underlying fault tolerant real-time networks. This, however, might not be true in most soft real-time applications. In this paper, we propose a practical approach to a synchrony protocol, called Quality-Aware PALS (qPALS), which provides the benefits of a synchronous computing model in environments where no fault-tolerant real-time network is available. qPALS supports two flexible global synchronization protocols: one tailored for the performance and the other for the correctness of synchronization. Hence, applications can make a negotiation flexibly between performance and correctness. In qPALS, the Quality-of-Service (QoS) on synchronization and consistency is specified in a probabilistic manner, and the specified QoS is supported under dynamic and unpredictable network environments via a control-theoretic approach. Our simulation results show that qPALS supports highly reliable synchronization for critical events while still supporting the efficiency and performance even when the underlying network is not stable.

Real-Time Vehicle Detector with Dynamic Segmentation and Rule-based Tracking Reasoning for Complex Traffic Conditions

  • Wu, Bing-Fei;Juang, Jhy-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2355-2373
    • /
    • 2011
  • Vision-based vehicle detector systems are becoming increasingly important in ITS applications. Real-time operation, robustness, precision, accurate estimation of traffic parameters, and ease of setup are important features to be considered in developing such systems. Further, accurate vehicle detection is difficult in varied complex traffic environments. These environments include changes in weather as well as challenging traffic conditions, such as shadow effects and jams. To meet real-time requirements, the proposed system first applies a color background to extract moving objects, which are then tracked by considering their relative distances and directions. To achieve robustness and precision, the color background is regularly updated by the proposed algorithm to overcome luminance variations. This paper also proposes a scheme of feedback compensation to resolve background convergence errors, which occur when vehicles temporarily park on the roadside while the background image is being converged. Next, vehicle occlusion is resolved using the proposed prior split approach and through reasoning for rule-based tracking. This approach can automatically detect straight lanes. Following this step, trajectories are applied to derive traffic parameters; finally, to facilitate easy setup, we propose a means to automate the setting of the system parameters. Experimental results show that the system can operate well under various complex traffic conditions in real time.

Trajectory tracking control of underactuated USV based on modified backstepping approach

  • Dong, Zaopeng;Wan, Lei;Li, Yueming;Liu, Tao;Zhang, Guocheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.817-832
    • /
    • 2015
  • This paper presents a state feedback based backstepping control algorithm to address the trajectory tracking problem of an underactuated Unmanned Surface Vessel (USV) in the horizontal plane. A nonlinear three Degree of Freedom (DOF) underactuated dynamic model for USV is considered, and trajectory tracking controller that can track both curve trajectory and straight line trajectory with high accuracy is designed as the well known Persistent Exciting (PE) conditions of yaw velocity is completely relaxed in our study. The proposed controller has further been enriched by incorporating an integral action additionally for enhancing the steady state performance and control precision of the USV trajectory tracking control system. Global stability of the overall system is proved by Lyapunov theory and Barbalat's Lemma, and then simulation experiments are carried out to demonstrate the effectiveness of the controller designed.