• Title/Summary/Keyword: dynamic constraints

Search Result 675, Processing Time 0.03 seconds

Applications of New Differential Dynamic Programming to the Control of Real-time Reservoir (새로운 미분동적 계획법에 의한 저수지군의 최적제어)

  • Sonu, Jung Ho;Lee, Jae Hyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.27-42
    • /
    • 1984
  • The complexity and expensiveness of water resources projects have made optimum operation and design by computer-based techniques of increasing interest in recent years. Water resources problems in real world need many decisions under numerous constraints. In addition there are nonlinearities in the state and return function. This mathematical and technical troublesome must be overcome so that the optimum operation polices are determined. Then traditional dynamic optimization method encountered two major-cruxes: variable discretization and appearance of constraints. Even several recent methods which based on the Differential Dynamic Programming(DDP) have some difficulties in handling of constraints. This paper has presented New DDP which is applicable to multi-reservoir control. It is intended that the method suggested here is superior to abailable alternatives. This belief is supported by analysis and experiments(New DDT does not suffer course of dimensionality and requires no discretization and is able to handle easily all constraints nonlinearity).

  • PDF

End-to-End Quality of Service Constrained Routing and Admission Control for MPLS Networks

  • Oulai, Desire;Chamberland, Steven;Pierre, Samuel
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.297-305
    • /
    • 2009
  • Multiprotocol label switching (MPLS) networks require dynamic flow admission control to guarantee end-to-end quality of service (QoS) for each Internet protocol (IP) traffic flow. In this paper, we propose to tackle the joint routing and admission control problem for the IP traffic flows in MPLS networks without rerouting already admitted flows. We propose two mathematical programming models for this problem. The first model includes end-to-end delay constraints and the second one, end-to-end packet loss constraints. These end-to-end QoS constraints are imposed not only for the new traffic flow, but also for all already admitted flows in the network. The objective function of both models is to minimize the end-to-end delay for the new flow. Numerical results show that considering end-to-end delay (or packet loss) constraints for all flows has a small impact on the flow blocking rate. Moreover, we reduces significantly the mean end-to-end delay (or the mean packet loss rate) and the proposed approach is able to make its decision within 250 msec.

Dynamic Modeling and Adaptive Neural-Fuzzy Control for Nonholonomic Mobile Manipulators Moving on a Slope

  • Liu Yugang;Li Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.197-203
    • /
    • 2006
  • This paper addresses dynamic modeling and task-space trajectory following issues for nonholonomic mobile manipulators moving on a slope. An integrated dynamic modeling method is proposed considering nonholonomic constraints and interactive motions. An adaptive neural-fuzzy controller is presented for end-effector trajectory following, which does not rely on precise apriori knowledge of dynamic parameters and can suppress bounded external disturbances. Effectiveness of the proposed algorithm is verified through simulations.

A Study on Dynamic Lot Sizing Problem with Random Demand (확률적 수요를 갖는 단일설비 다종제품의 동적 생산계획에 관한 연구)

  • Kim, Chang Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.194-200
    • /
    • 2005
  • A stochastic dynamic lot sizing problem for multi-item is suggested in the case that the distribution of the cumulative demand is known over finite planning horizons and all unsatisfied demand is fully backlogged. Each item is produced simultaneously at a variable ratio of input resources employed whenever setup is incurred. A dynamic programming algorithm is proposed to find the optimal production policy, which resembles the Wagner-Whitin algorithm for the deterministic case problem but with some additional feasibility constraints.

Time Series Pattern Recognition based on Branch and Bound Dynamic Time Warping (분기 한정적인 동적 타임 워핑 기반의 시계열 패턴인식)

  • Jang, Seok-Woo;Park, Young-Jae;Kim, Gye-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.584-589
    • /
    • 2010
  • The dynamic time warping algorithm generally used in time series pattern recognition spends most of the time in generating the correlation table, and it establishes the global path constraint to reduce the corresponding time complexity. However, the constraint restrains just in terms of the time axis, not considering the contents of input patterns. In this paper, we therefore propose an efficient branch and bound dynamic time warping algorithm which sets the global constraints by adaptively reflecting the patterns. The experimental results show that the proposed method outperforms conventional methods in terms of the speed and accuracy.

Structural Design Optimization of a High-Precision Grinding Machine for Minimum Compliance and Lightweight Using Genetic Algorithm (가변 벌점함수 유전알고리즘을 이용한 고정밀 양면 연삭기 구조물의 경량 고강성화 최적설계)

  • Hong Jin-Hyun;Park Jong-Kweon;Choi Young-Hyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.146-153
    • /
    • 2005
  • In this paper, a multi-step optimization using genetic algorithm with variable penalty function is introduced to the structural design optimization of a grinding machine. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints such as dimensional constraints, maximum deflection limit, safety criterion, and maximum vibration amplitude limit. The first step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted from the good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a grinding machine. After optimization, both static and dynamic compliances are reduced more than 58.4% compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

A Study on Optimal Electric Load Distribution and Generator Operating Mode Using Dynamic Programming (동적계획법을 이용한 발전기의 운전모드 및 최적부하 배분에 관한 연구)

  • H-H Yoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.313-319
    • /
    • 2002
  • Since the oil crisis in 1970, a great deal of effort has been made to develop automatic electric load sharing systems as a part of the efforts to save energy. A large scale electric generating system composes more than two generators whose characteristics may be different. When such a system is operated individually or in parallel, the lagrange multiplier's method has difficulty in achieving optimal load distribution because generators usually have the limitations of the operating range with inequality constraints. Therefore, a suitable operating mode of generators has to be decided according to the selection of the generators to meet electric power requirements at the minimum cost. In this study, a method which solves the optimal electric load distribution problem using the dynamic programming technique is proposed. This study also shows that the dynamic programming method has an advantage in dealing with the optimal load distribution problem under the limitations of the operating range with inequality constraints including generator operation mode. In this study, generator operating cost curve of second order equation by shop trial test results of diesel generators are used. The results indicate that the proposed method can be applied to the ship's electric generating system.

Quantitative Lateral Drift Control of RC Tall Frameworks using Dynamic Displacement Sensitivity Analysis (동적 변위민감도 해석을 이용한 고층 RC 골조구조물의 정량적인 횡변위 제어 방안)

  • Lee, Han-Joo;Kim, Ho-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.103-110
    • /
    • 2006
  • This study presents a technique to control quantitatively lateral drift of RC tall frameworks subject to lateral loads. To this end, lateral drift constraints are established by introducing approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems. Also the relationships of sectional properties are established to reduce the number of design variables and resizing technique of member is developed under the 'constant-shape' assumption. Specifically, the methodology of dynamic displacement sensitivity analysis is developed to formulate the approximated lateral displacement constraints. Three types of 10 and 50 story RC framework models are considered to illustrate the features of dynamic stiffness-based optimal design technique proposed in this study.

  • PDF