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Abstract

The complexity and expensiveness of water resources projects have made optimum: opetation
and design by computer-based techiniques of increasing interest in recent years. Water resiburces
problems in real world need many decisions under numerous constraints. In additier thete are
nonlinearities in the state and return function. i

This mathematical and technical troublesome must be overcome so that the optimum operation
polices are determined. Then traditional dynamic optimization method encountered two major
cruxes: variable discretization and appearance of constraints. Even several recent methods which
based on the Differential Dynamic Programming(DDP) have some difficulties in handling of
constraints,

This paper has presented New DDP which is applicable to multi-reservoir control. It is int-
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ended that the method suggested kere is superior to sbmilatile alternatives. This - -belief is sup-
ported by analysis and expetiméhtsa(New DDT does. not suffer. emmg of dimensiomlity and
requires ng: discretization attl 'l able to handle easily all constraints’sd nonlinearity).

1. Introduction

The purpose of this paper is to describe and
analyze the method, which gives a clue tothe
difficult problem, to. determine optimum oper-
ating policies * of real 'reservoirs.n As water
resource systems grow large and become more
complex, the optimum use of multipurpose
reservoir uses become important. The invest-
ment cost and operating expenses of ' projects
are so large that even small improvements in
system utilization can involve substantial am-
ounts of money. Also kcomplicationj arises in
interaction between the objectiﬁés(thé various
control points, power generators, irrigation
outlets, pumping sta}:ion etc.) which cause

difficulties in obtaining an optimum design or’

operating policy using an empirical approach.

Thus, the potential benefits of using optimiz-

ation techniques in ‘these 'problems are very
great indeed.

Optimization of such a system is still a
formidable task when the number of state and
control variables and the number of constrairits
is large. In the study of T.V.A.®, for insta-
nce, the Tennessee Valley Authority, which
manage a system of 40 water reservoirs, rep-
orted that the maximum size of the problem

of controlling a system of water reservoirs .

solved with the existing numerical methods
involved a system of 6 reservoirs.

If a general analytic solution of the discrete-
time problem does not exist, then numerical
methods should be available. ‘Dynamic : progr-
amming, although impressive in comparison
with direct enumeration, is effective only
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when the number of variables is small. Con-
szquently, many iterative methods have been
developed.

One. of them is the succesive approximation
method which is originated from Larson‘® in
TVA projects formed to be most effective for
multi-reservoir control. After this study Larson
and Lerkler®, Korsak and Larson® improved
this method. Conséquently a convergence proof
for this technique covering the multi-reservoir
problem was given by Larson and Korsak®.
Trot and Yeh‘® applied this tool to determine
optimum reservoir size and operating policy.
It was refined and exploited by Yeh et al.<»,
Nopmongcol and Askew*®. Since it has been
termed the Dynamic programming with Succ-
essive Approximation(DPSA), it'is basically a
procedure for successive approximation on state
trajectory space. This technique has some dis-
advantage, that is, suffering the course of

~dimensionality.

Heidary et al.®® and Chow et al.®"® have
developed what that ‘call a discretized version
of Differential Dynamic Programming in con-
nection with their stiydies of the multireservoir
control problem(IDP). However, because of
discretization they lose many advantage of Di-
fferential Dynamic Programming. Above all
Turgeon®? has shown that Incremental Dyn-
amic Programming may yield nonoptimal sol-
utions.

To avoid this disadvantage Murray and
Yakowitz®
LQP (performance is quadratic and state equ-

devised a linearly constrained

ation is linear) which is based on the Differ-
ential Dynamic Programming procedure of
Jacobson and Mayne"®). They approximated
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objective function by quadratic fumction in
order to avoid. second order derivative that
appears in DDP, Although their device is vary
effective, they couldn’t find a tool that modify
solution and: made some mistakes. Iniapproxi-
mation procedure for objective function they
regarded state variable as constant, but in
solution model it as variable. For. resticting
bounds of state variable and conttel variable,
in every state they have constritted some
 feasible region which all vatiable may not
violated by using Fletchér®® algerithm. In this
method there are twe procedures. One is con-
structing feasible region and the other is mo-
difying intermediate solution, but it i8 not
sure how to modify trial solution.

Difficulties in constructing feasible regions
was tackled by Jae Hyoung®®:!® The author
devised the conceptual algorithm which is
based on “Discrete Maximum Principle with
State Constrained Control”!? and Nedeljkovic’s
algorithm®'®, But the approach is not clear
whether it is easy to obtain numerically opt-
imal solutions of the mathematical model based
on Ortega®?. The second alternative®® has a
measure to modify a trial solution and is a
numerical model. It is successful to find a true
optimal path. However difficulties in handling
constraints remains still.

It is sure that difficulties in handling nonli-
nearity can not be avoided. For this Yeh et
al. ¥ have developed practical procedure by
adopting two phases that LP is adapted to
DPSA. They adopted two phases method a
approximated solution in Phase I by using
linear programming(LP) and the true solution
in phase II by using DPSA.
they fitted nonlinear benefit curves in linear

In this project

for LP model. Nonlinearity in benefit or cost
function is ordinary phenomena. The algorit-
hms that is recently developed and first order
algorithm, have difficulties in handling of co-
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nstraints and' non-linearity. Yeh applied twe
phase method to this problem. Yeh's two ph-
ase madel is regarded as a method to reduce
the burden of nonlinearity. This method seems
to have two drawbacts. One of them is dime-
nsionality -in LP system. The prder is hard to
fit terminal constraints.

It is clear that more general and suitable
method would substantially increase ability to
solve this kind of  problems. Ohno®® who
proposed a possibility of them modified the
second order discrete-time DDP for problems
with and without constraints and proved its
local convergence(i.e. when the starting peint
is sufficiently close to the optimum)Y®,

As his theory seems to be more suitable to
this problem than any other®(i.e. no discre-
tization, no restriction on the relation of var-
iables, Quadratic convergence)“, here it is pr-
oved that it is possible to develop discret-time
multipurpose and multireservoir optimum con
trol version of Ohno's algorithm. Also this
paper presents how to overcome local ‘conver-
gence problem and how to deal with constra-
ints. It is shown that the model gives better
result than any other existing methods.

2. General Formulation and Definition

The multi-reservoir control process is defined
to be a discrete time control problem such
that the set of decision is the finite set 1,2,
..., N of integers and the state and control
are m and m-tuples, respectively. Consider a
system composed of m reservoirs with both
series and parallel connections. The flow of
water between the reservoirs can be described
by a set of difference equation(referred to
sta te equation, physically speaking continuity
equation).

ZLi17=J(Zay Uy Vr) (1)
in which X={(&,},+-+, z,”), in which x," rep-



rasents the storge level; I/==(g&,}, -+, 4.}, ' in
which ‘w* represents the release policy for
regétvoir m duping tiswe horigon a; Y=(3.!,
@™, inowhidh »." represents the- total
inflow into reservoir m during time ‘horigon
n, which includes the nataralstream flow and
release from the upstream; m==total ' number
of reservoirs or reservoir ifidex; fis ah m-
dimensional vector of functibns. '

The net benefits are defined-as follow

V=" Lz w0 +Latan) @

in which L.(z., %.)=the retuin by selling
water and/or power produced by the entire
system dutring planning period through optimal
operation in the existing reserveirs.

It is necessary to maximize V. under all
constraints imposed updn the system. Assume
that ‘each of the m reservoits has a maximum
allowable storage capacity, La..", a minimum
pool of z...”, and a maximum allowable rele-
a8%, Wa), 3 minimum releage, w...'(for exa-
mple, duritig flood seasan it is necessary that
regervoir is in the low level and. duritig day
tirne power generated maximally, but in'spring
season reservoir level is reserved for recreation
etc.) for the 1 controlers. Then the optimal
operating policy associated with this given set
of reservoirs capacity and constrained release
is the sequence of decisions: wo, e, +i+, uy.y Wh-
ich maximize return. The objective function
for optimal operation is to

maxg L. (xn, 2s) +Ln(zn, un) (3
subjected  to

TainSEn Lar (4)

Umin Sty S thpae (5)
and state ‘equafion ‘

Zns1=f (X, %ay ¥a) (6)

in which the initial state of the system), ,,
ig ' given. If a final reservoir level would be
restricted in order to schedule peripdically,

then terminal  level could be considered as a
final valie, Tn this vase =z, is dlwo given. The
. problem is two boundary balue problem(is
referred TBVP). These syétem equtations not
only describe the movement of ‘water through
the system but also describe the: transition of
the '‘state variable(x) from = stage to n1
stage. This problemis conceptually formulated
by ‘uging Dynamic Programming{DF}) or Max-
imum Principle(MP). The constraints are arr-
anged so that ‘conceptual mode of this problem
is changed into solvable mode. If sguation(4)
and (5) is invertible, then
Ca(z,) <u,<b(z.)
or' a(Zs) ~un=gy{Zn, %s) <0
tn— () =g2 (xwr 4,) <O
‘more generally g(z, #.)<\0 and the terminal
constraints is formulated as follows
TR ) =ay—An

)]

®)
" Or R(&xx, tin) =0
where %y means a given value.. This problem
can be formwlated by ‘mathematical program.
rhings.. But such methods require computational
amoufit proportional to N, while stage wise
methods require it linear in N. These consid-
eration leads us to a stage wise method for
control problem (for example, DP: ot MP).
The Dynamic Programming is a stagewise
procedure which, in principle, enable-one to
determine the optimal solution. This method
requires the construction of u,(x) for a=N—
1, N—2, -0, where for each =z,
u,(z) =arg m“in (L, (x4, us)+
Vs (fa(2n, 20))] -+ (9)
the optimal value functions V being determi-
" ned recursively by Vi(z) =0 and
V() =Ll zn, #al2))
+ Vasr (fa (20, 1)) (10)
The function »,(x) having been computed for
n=N--1,+::0. The basic trouble with this pr-
ototypical DP algorithm is that with the ex-
ception of certain rare instances the functions
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u,{(z) and V,(z) camnot be cenveniently tep-
resented in the computer. It is well known
that this conventional DP requires the storage
of V,.1(z..;) for appropriate latice points of
Zay1 and the comparisons of values of expre-
ssion L,(z, #.)+ Var1 (fu{zs, #.)) 2t all admi-
sible controls wu, for all lattice points of z..
Since this appreach is computationally impos-
sible when m>5, we following the line of
Jacobson and Mayne'® in the reservoir control
problem, this implies that all other factors are
remaining the same, while the memory and
computational burden grows exponentially wi-
th the number ef reservoirs in a system.
The effort toward overcoming this limitati-

ons are techniques known collectively as suc-.

cessive approximation methods which orgina-
ted from Bellman and Drey fus®®. This kind
of a traditional DDP can hardly solve optimal
control problems with inequality constraints
on state variables. The new DDP®? algorithm
is based upon Kuhn-Tucker conditions and is
composed of iterative methods for solving sy-
stems of nenlinear equations. It is shown in
following section that the new DDP with
Newton’s method can overcome “discritization
and constraints” problem. ‘

3. Optimal Conditions

Let{z.%; n=0,---N} be the optimal trajectory
corresponding to the optimal control {u,’; a==
0, N—1}. All the functions f., gu, L.(n=0,
N—1) and Ly are twice differentiable. - For
scalar functions L,, y.L, and y.°L, mean the
gradient row vector and the Hessian matrix
of L, with respect to u,, respectively. And for
vector functions f., V.f. and ¢.%f, mean the
Jacobian matrix and the second derivative of
f» with respect to u. respectively. That is,
Vuln=(0L./0%n1..., 0Ln/0tn), FirLo==(8L,/0tn:
Ou.)), Vufn=(8fn/0u.;) and for any m-dime-
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nsional column vector z, z"V,?f,.=§ 2:V2 fois
§

where z7 denotes the transpose ef z Let L.'
and y.L.° stand for L.(z.% ), Wuliw 2.5 ")
and 80 on respeetively.

Define the Lagrangian  fnctions F(n=g,...,
N—1) for ene variable minimization preblem
of eguation (16) as

Fo (@ ns Ay 1) = Lin(Z s t0a)
+ Vs (fo (Za) 2#0) )
+ AT G (Zny )
+ﬂnrhn (Z, un) (11)
where Lagrange multipliers i, and u, are m,
and I, dimensional column vectors. If V. is
twice continuously differentiable, then the fo-
llowing Kuhn-Tucker conditions hold as seco-
nd-order necessary conditions that z,° be an
optimal solution of equation(10). There exist
2L and #." such that
VP =9, L4y V0 W '+ 4.777.8.°

+ (1) YR =0 (12)
diag (A.)g:°=0, h."=0 (13)
g,.OSO, 2"020 ' (14)

and such that for every vecto z satisfying
7.8-.22=0 and Y.k, z=0,

2" "2 >0 (15)
where diag(l,) denotes the diagonal matrix
with the i-th diagonal element 2,! and

Vi F=9. L. 47 Vo 210025

+ (0T84 (") TR
+ (VO Vai 1P S (16)

4. New Differential Dynamic Programming
Algorithm

Put w,=(u,", LT, p7)7 for n=0, .-
N—1 and define T,(x. w,)
=(V.F. g diag(d.), b7 (17)
For fixed z,, T,(x., wa)==0 is a system of (1-+
m.+1,) equations for the same number of
unknowns (for example unknowns of w=IX
n, A=mxXn, p=1). In addition, conditions{12)



and (13) can be rewritten as T,(x. w.")=
0. ‘Therefore, if w,? is an isolated solution of
T (2.8 wy)==0, that is, if there exists a nei-
ghborhood - of z,° which contains no other
solutions of T,(x.’ v,)=0, then w® canbe ob-
tained by solving 7T,==0, ‘in its appropriate nei-
ghborhood without taking into consideration in-
equality (14). From inverse function theorem®®
it follows that if the Jacobian matrix of T,
with respect to w, is nonsingular at w0,
then w,’ is an isolated solution of T,(x.°, w,)
=0.

The Jacobian matrix of 7,, denoted J,, is
given by

Vi F, Fu&n'  VuhaT
Jo( 0 wo) =| ding (1) V.8« diag(g.) 0
Vihn 0 0

(18)

The Jacobian matrix of T, with respect to
z., denoted by K,, is given by

K. (zn wa) = (V"F.7, 7.8.7
diag (1.), v.hT)T (19)
where
Vit Fo= Vo LAV £ VeriV f
FI VarsVu ot ATV’ 8ot 2072k
(20)
if we assume J,° is nonsingular, then w,%(z,)
= (12 (2a) T4 (20) T, #2(2,)7) is an isolated so-
lution of 7,(x,, w,)=0 for fixed z, belonging
to a neighborhood z, of z,’. Moreover V,(z,)
is twice continuously differentiable in x, and
¥ Va(zs) =V:Lot-¥ Vair W fi - 10(2,) 7V . g,
F 12 (2.) 'Y R @n
V2 Vi(2) =02 L+ V.V aniVo o
+V Vars¥ 2t 42 (24) 79280
+ 1.2 (Z) TP+ (F oL,
+V-f n’V’ VnHVﬂf AT 1qul‘ifu
F A2 (2) T w0t 12 (24) VPR
T (20) + 9. 8.77 ()
Y (22) @2)
where all functions assume values at (z,, u,

(z)) and w,(z,) is given

by :
V“nn (z.)
v (z.) =| g4’ (xy)
¥ a®(Zn)
=N, wa (X))
Ko (s, wa*(24)) (23)

Thig direction matrix leads us to a optimal
solution and was proeved by Ohno®V, He sug-
gested the following numerical scheme, Denote
an arbitrary iteration protedure for solving

‘the system of nonlinear equations T, (., w.)

=0 with fixed =z, by

w, = U (2, wat), £=0,1,2,++ (24)
For example, Newton’s meéthod is described as

U (&, wid) =wab—J,7 (., wat)

Tulxm wat) (25)

Let {m,% n=0, ---, N—1} be given, and let
{z,%n==0...,N} be the trajectory corresponding
to {u.’).

follows. Calculate w.**? by w,**'="U, (z.* w,.*)

Then a conceptual algorithm is as

for n=N—1,+--, 0. It is to be noted, however,
that T,, J, and K,(n=0, -, N—2) include
unknown values ¥ Vaii{Zuit®) =92 Vir1(Zars*).
Consequently it is essential to obtan their
approximate values which guarantee that {xv,%
is a point of attraction of the following Ohno’s
DDP algorithm, there exist open neighborho-
ods W, of w.°(n==0, -+-, N—1) such that for
any wEW,, w.*(k=0,1,+--) generated by
the algorithm remain in W, and converge to
w,2(23). Since exact values ¢ V.(z.), y*V*
(x*) and yw,?(z.*) are given, such approxi-
mate values will be obtained by approximating
appropriately (21) through (23). Denote by
vy V.t and p* V.t (n=1, N—1..., k=0,1,2,---) the
approximate values of yV,(z,*) and g?V.(x.*),
respectively.

New DDP alforithm proposed by Ohno is as
follows,
Let w; n=0, »--N—1 and z; n=0, -, N be
given, and set k=0
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Step 1; By using ¢ Vy=¢Ly and ¢*Vy=y*Ln,
 calculate @y, Y, v Vst and 9*¥u,* by
'1,TIN_1"+’#UN_1(xN_1‘, wy..1") (26)

VVN_1"‘——-“V:¢LN_1+V Va(fu)¥sfn-
+ (/ZN-IH'I)TV:gN-I
+ (v_*t) TVth—ln (27)
and
v? vN-—lk=Vx2LN—l+foN-ITVZfN-1TV2 VaV:fu-1
+9 Vw1t (vt TV 28N
A ()T Puthner— (Wt Loy
+V- f;v_x‘rv"3 VNV2 VNVqu-l
+v VNqu2fN—1+ (Aw_1® 1;Vufgw.x
+ () Tt hner) (o1 K1
— 81" [Jyor  Ki]a
—Vhn T [(n-1 Kyt (28)
where all functions except y.f, in(27) assume
values at (xn_i% @n-'™), all functions except
v Vyvand 9*Vy in (28) assume values at(axw_%,
uy-*) and yVy & y?Vy assume values at xy
=Zy.
Step 2: For n=N-2, -+, 1,
v V.* and 92V} by
&, =T, (x4, w,*) (29)
Vi =V LA Vot fa
+ (T~ 0T G fo (225, #,2) TP Va1 Y S
+ (AH) gt (@) VR (30

calculate @,

and
V' V=9 2L+ 9. £ Vo Y b O Vs VL
+ (A TY gt (1)) T R,
~ [Vl La AtV STV Vit 0 ot ¥ P10
+ (AR 080t () k] [Jo K]
~ &[] K=y [ KL (31)
where all functions except v.f. in (30) assume
values at (z.% &.**') and all functions in (31)
assume values at (z.*, u.*).
Step 3: By using the initial condition zy=2%,,
calculate w**! by

wottie= 7, (%o, wo*) (32)
Step 4: For n=1, .-, N—2, calculate z,**'and
w,,"“ bY
2= f (T, ) (33)

and
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wn*+l:wnk+l“’[]n-lku(xnku wn")]

(za**—z,%) (34)
Step 5: Calculate zy_,**%, wu_#7!, and zy**t
by
M=o (@M, wn ) (358)
wy P =y [T T K
(xN-—l"v wy.1*)] (35)

and

(-t —zy_1®)
if max,||w.*"!'—w,*|<e, then stop; otherwise.
set k=k--1 and go back to Step 1, where ¢is
a small given number and | « || denotes I,
norm,

5. Computational Studies in Multireservoir
Control

Ohno's DDP algorithm has been applied to
multireservoir control problems. The first of
these problems was introduced into the liter-
ature by Larson‘® and subsequently served as
anillustrative example for discrete  differential
dynamic programming in an investigation by
Heidari et al.®? as well as an example of
multilevel incremental dynamic programming
in the work of Nopmongcol and Askew®.
The second example was presented by Chow
and Cortes Bivera®® to illustrate DDP with
adaptive corridor with selection. Also Murra~
and Yakowitz'® dealt with this example o
illustrate DDP with Flectcher™ algorithm.
But this example was not presented here bec-
ause it is same as first example except inflows
which is constant variable in the state equa-
tion. Qur final computational study provides
the solution of a control problem as same as
second example except having nonlinear obje-
ctive function.

In order to understand the characteristics of
the models of three problems are tabulated in
Table 1. Model A and B is called “Singular
arcs Control” problem which is difficult to



'mam 1. Chagacteristics of thwee problems

Te— Froblets

Charagteristic of ME\\\

A : Larson Problem

State equation Zagr = En+ Mitat-yu

Inflows ya==Constant
Constraints a(Zn) KenSh(2n)
Initial and terminal value | Given

Objective function Linear

B:ﬁiﬁmw and Cartes C:W-_Yéhb;;p» .
Rivera's Problem Objetcive function

Zngy == Lnt- Mignt-Yn m;.r:m—h“m&y-

y.==Variable = Variaghle

(%) Stnb() a(zn) Sua<b(zn)

Given Given

Linear Nonlinear

N

) Power plant

Pig. 1. Reservoir network of a simplified system.

golve. There are several methods to relaxe
this difficulty. The popular ene is the trans
formation of the original problem into linear
state, Quadratic objective function. jpreblem.
New DDP can be applied to this modified
model.

In multireservoir control problem, the disc-
ussion of this first part is particularly lengthy
because here some fine points (applicable to
remaining problem) of New DDP implementa-
tion are described. It is presumed that the
four reservoirs comprising the system have
the configuration shown in Figure 1. For the

— 34 —

problem at hand the law of motion (equation

aa

can be written,

Zest'\ (ZAl) (=1 0 0 O
x,.+1“=x..” n 0—~1 0 0
E . Za2 0 1-—-1 ©
Tt z.t 1 0 1-—-1
Y (¥
Uy "
ws [T i,’ 37
.t ¥t

or

Zupy=TatMityty., 1< 0 <12
Additionally state constants are imposed to
keep the nonegativity is storage and lies wit-
hin the reservoir capacity. The state space
congtraints were taken as

0 Tl 7 10

0 < x4 < 10 P

ol = 1z2! — |10 1<n<12 (38)
0 z.t '15

The initial: state is taken to be (5,5,5,5)7,
and the terminal state is constrained to be
(5,5, 5,7)T. The final decision time step N is
12. Furthermore, and y,?
=3, The release constraints are determined
by the condition that

for each a1, ¥,/=2,

(0 (uf 3
0 u,° 4
0 S[u”a S|, l1e<1z (39)
0 .t 7

The control and state constraints have been
combined by Murray and Yakowitz as follows.
an+bngun§_Axn+an (40)
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g1{(xu us) =—hi,+ Az, +a. (41)

8:(zw 4,) =Iu,—Bz,—b, (42)
where I is mXm identity matrix, A and B
mXm matrix, a, and b, mX1 vector: respect-
ively and these constants was given by Murray
and Yakowitz.

The one procedural fine point remaining to
be discussed, is how to obtain positive definate
quadratic approximations to the linear loss
function L(x,u,n) defined by

4
L (.Z', %, n) = Zl CJ': ntjyn (43)
J:

The loss coefficients C;,, are given Table 2, It
is sufficient to describe the method used to
obtain an approximation to function-u. It is
approximated by

Qlz,u,n)=—C"u+u"Du (44)
where D is an sufficient small diagonal cons-
tant matrix.

Finally for our experiments terminal const-
riants are transformed into

h(zn, un) =z5-1+Muy_1+351—2  (45)
The functional with respect to the equations
(41)~(45) is
F(Zn, Aty A7) =Q (L, tn) + V1 (Tns2)
+ 20" 781 (Zny ) AT 2 (T, W)
for n=1,---, N—1 (49
Fn(lm ﬂrvl, ZNZ) ZQ(SCN, uN) +'UN+1(~Z‘N+1)
+/leTh (-731\*. uzv)
+Ax*Tg 2 (xn, un) (47)
for n=N
Test run for ‘analysis of influence of D:

Fig. 2 indicates changes in total benefit du-
ring the iteration. The circled line represents
increase in total benefit when d is selected as
d*=0.87d in every step of iteration. In this
test run, € was set as £=10* and the iominal
control u,°={2,3,3,5} and the initial value
%= 15, 5,5,5}, A°= {500, 500, 500, 500} . In this
computation we found that d* increase the
value of objective function until singular poi-
nts appeared ‘in the Jacobian. Unfortunately
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335
280 L
851 d:0.2578
z | 40,34 d=0.2960
& 380 d=0.3350
2 803915
g 3751 d4=0.1500
—
3701
365
383.01 )
! 3 5 7 5 i 13 15
Iteration

Fig. 2. Total benefit for the test A5

Table 2. Time functions used in calculating benefit

k| al) | e® | e | al) | ok
0 1.1 1.4 Lo 1.0 1.6
1 1.0 1.1 1.0 1.2 1.7
2 1.0 1.0 1.2 1.8 1.8
3 1.2 1.0 1.8 2.5 1.9
4 1.8 1.2 2.5 2.2 2.0
5 2.5 1.8 2.2 2.0 2.0
6 2.2 2.5 2.0 1.8 2.0
7 2.0 2.2 1.8 2.2 1.9
8 1.8 2.0 2.2 1.8 1.8
9 22 | 18 | 18| 14| L7
10 1.8 2.2 1.4 1.1 1.6
11 1.4 1.8 1.1 1.0 1.5

state variables are violdting constraints before
objective function reaches an optimum value
(Fig. 3). The dotted line with d=0. 8350 are
quadratically converging in Figute 2. Also the
effect has been understood so that constraints
of ‘objective function is more dominant than
state constraints during the period of large
value C, otherwise states do not cut the bou-
ndaries. This test run give us two clues to
the problem, that is, how to select  “d” and
how to evalute the constraints relatively.
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Fig. 3(1). Optimal trajectory for the test A5
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Fig. 3(2) Optimal trajectory for the test A5

Multireservoir control problem(A)

In this example the same nominal values

and initial:values and & with the same value
as test run have been used. But the:priniciple
of the relative constraints' has been applied
to the model not to violate some states con-
straints. This technical operation is very usual
way. If the program succedes in running
without violation, then it plays the role that
controls force to release water from  reser-

voir even in low benefit season. So we can
obtain more benefit in this modified medel
than in unadaptable methods. The computa-
tion results for this example are sumnmerized
in Fig. 4,5. But it has not succeded in run-
ning the model of this problem wif;h Murray
and Yakowitz's objective function (12).

In Table 3 Murray and Yakowitz have com-
pared the performance of his DDP and DDDP.
Problem 1 was also solved by a DPSA algor-
ithm by Larson™®. His computations took 30s
on a B-5500 computer. :

KR -L K A R



410

4001

380 t

370+
367,85

Total benefit

360 [

340 . L .

3

o 2 4 [ 8 4] 12

lteration
Fig. 4. Total benefit for the problem A

It should be pointed out that problem 1 is
particularly well suited to methods such as
DDDP and DPSA which require discretization
of state space. It is reported by Heidari et
al.® that when noninteger corridor width was
used, 18 DDP iterations were needed to obtain
a return of 399.06. However only 4 New DDP
iterations has been required to reach a return
of 400 without discretization of state space.
Consecution time of every iteration in this
study took about 300 400milli second on FA-
COM.

Fig. 5 displays comparison of trajectories
with Larson’s. Any other model didn’t present
their state trajectory. In this figure Larson’s
model might yield nonoptimal state trajectory
because they use the discretized state value as

Table 3. Computational effort for problem 1.

D D P DDDZP
Initial trajectory
Time,s Iterations | Final value Time,s Iterations Final value
9.63 3 401. 197 35. 32 8 401. 3
19. 30 6 401. 274 48. 39 13 401. 3
256.7 401. 151 31.04 8 401.3

~—e——= Optimal trojectory

Nominal |
frojectory

Trial trajectory
Heidari's solution

5 7
Stage ()

5

7 9 i

Stoge n) . .

Fig. 5(1) Optimal trajectory for the problem A
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Fig. 5(2). Optimal trajectory for the problem A

integer. The trajectories can’t be compared
with the results of Murrary and Yakowitz
which is very recent study, becauge they didn’t
refer to that.

Maultireservoir control problem (C)

This problem, introduced by Chow and Cor-
tes-Rivera®®, is essentially the same as prob-
lem 1, the difierence being that the inflow and

Table 4a. Inflow values ¥,

constraint parameters are chosen so that con-
sequently for methods(such as DDDP and DP-
SA) which use state discretization, adaptive
step-size selection will have to be employed.
For Murrary and Yakowitz’s DDP and new
DDP state variable is not discretized and it
makes no difference whether the solution comp
onets are integer valued. The inflow parameters
are given in Table 4a, the maximum storages

Table 4 b. Maximum. permissible storage values

Value of . § for =/

n . 5 . Value of j

1 0.5 0. 4 1 [ ! 3 [ 4
2 1.0 0.7 2 12.0 15.0 80 | 150
3 2.0 2.0 | 12.0 15.0 8.0 15.0
4 3.0 2.0 4 10.0 15.0 8.0 15.0
5 3.5 4.0 5 9.0 12.0 8.0 15.0
6 2.5 3.5 6 8.0 12.0 8.0 16.0
7 2.0 3.0 7 8.0 12.0 8.0 15.0
8 1.25 2.5 8 9.0 15.0 8.0 15.0
9 1.25 1.3 9 10.0 17.0 8.0 15.0
10 0.75 1.2 10 10.0 18.0 8.0 15.0
11 1.76 1.0 11 12.0 18.0 8.0 15.0
12 1.0 0.7 12 . 12.0 18.0 8.0 15.0

-~ 38— -k M Bl B



aregiven in Table 4 b, the minimum storage is
1.0 for all » 1. The nominal values are same
as in problem(A). We don’t need 4 any mote
because objective function is nonlinear. The
minimum permissiable storage in any reservoir
during times 2 through 12 is 1.0 for each =,
and releases u, are constrained by

0. 005 4.0
0. 005 4.5
0. 005 8.0

For this problem the initial state and final
states are required to be (6,6,6,8)7 and (6, 6,
6, 8)T, respectively. In this study the objective
function of Cortes-Rivera’a model into model
C have been modified, in order to test the
feasibility of this method about arbitrary no-
nlinear system. As an example the type of
objective function have been selected which

appeared in Yeh study®. This objective
function is
4
L(.’ZZ, U, 7’1)221 C,-uj, ot (49)
=

here a<{1, in the computation “a&” has been
taken by 0.7. In Yeh’s study there were not

121
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e Optimal  irojectory
[{e] Triel frajectory
8
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]
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2
i 3 5 7 9 K 13
Stage(n)
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200[
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2
195 |-
190 L L L i N
0 2 4 6 8 16

teration

Fig. 6. Total benefit for the problem C

any informations about inflows and cost coe-
fficients. Therefore the results have not been
compared with theirs.

Fig. 6 depicts the convergence rate of the
total benefit and Fig. 7 displays the behavior
of state variable and pptimal state trajectory.

Stote x?

| 3 5 7 9 1 13
Stagefn}

Fig. 7(1). Optimal trajectory for the problem C
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Fig. 7(2). Optimal trajectory for the problem C
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Fig. 8. Behavior of Lagrangian multipliers

Finally in order to show that Lagrangian
multipliers play the role to-restrain the viola-
tion of the constrants, that is, how Kuhn-
Tucker conditions are satisfied (Fig. 8). But
there are so many multipliers that they can't

be depicted all. In Figure 8 arbitrary two tr-
ajectories of Lagrangian multipliers have been
presented. This figure indicates that Lagran-
gian multiplier is‘non-négative. Therefore it
can be assured that all the solution is optimal.
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6. Conclusion

The new DDP algorithm has been applied to
solving discrete time optimal control problems
with equality and inequality constraints on
both control and state variables. Its converg-
ence has been proved. The present algorithm
makes full use of the structure of discrete
time optimal control problems, and in this
sense it is natural algorithm for solving disc-
rete time constrained or unconstrained optimal
control problems.

For theoretical reasons and numerical expe-
riments the differential dynamic programmihg
method seems to have the most attractive pr-
operties of any available numerical methods
for multivariate dynamic programming probl-
ems. From a practical point of view, clearly
the most interesting aspects of the New DDP
method are the following;

(1) The memory and computational amounts
are relatively small;

(2) State and control spaces need not to be
discretized;

{3) No state variable decoupling(which char-
acterizes the DPSA technique) is done;

{4) No taking care wether the relations bet-
ween state and controFvariables are linear
or non linear;

{5) No need to adopt two phase technique (as
in Yeh®®), whether constraints exist or
not.

It is to be admitted that the structure of
the problem studied here, with nonlinear fu-
nction, is convenient. On the other hand expe-
rience in linear system is that if the requisite
derivatives of the loss function, law of motion
and constraint are easily obtained, there is no
essential difficulty in solving more complicated
discrete time optimal control problem. Conve-
rgence rate of the modified objective function

4l HWIW 19845 0 7

model proposed in this papaer is superior to
Murray and Yakowitz's. In Murray and Yak-
owitz’s model there were not the measure to
confine control and state variable to constr-
aints. But in this study, Lagrangian multiplier
which is the function of state variable play
the role of control not to violate constraints.
In order to start the present algorithm, it
is essential to obtain an initial guess {"w.,}
belonging to the neighborhood {w.} of {w,%.
This is a main drawback of the new DDP.
However in this experience this difficulty can
be easily covered. For example, nominal rele-
ases are selected so that water level stored in
reservoir is always equal to initial value
Finally this study has proved that terminal
equality constraints has been successfully ap-
plied by adopting equality constraints instead
of one of inequality constraints at the final

stage.

REFERENCES

1. Tennessee Valley Authority, “Development of
Water Resource Management Methods for the
TVA Reservoir System, Project Status”, Junme
1976, A report for a short course, Div, of
Water Ménage., Water Syst. a Develop. Br.,
Knoxville, Tenn., 1976. '

2. R.E. Larson, “State Increment Dynamic Progr-
amming”, American Elsevier Press, New York,
1676.

3. R.E. Larson and A.J. Korsak, “A Dynamic Pr-
ogramming Successive Approximations Technig-
ue with Convergence Proofs", Automatica, vol.
6, pp. 245~252, 1970.

4. A.J. Korsak and R.E. Larson, “A Dynamic Pr-
ogramming Successive Approximations Techni-
que with Convergence Proofs(2)”, Automatica,
Vol. 6, pp.253~260, 1970.

5. R.E. Larson and W.G. Keckler, “Applications
of Dynamic Programming to the Control of
Water Resource Systems”, Automatica, vol. 5,
pp. 156~26, 1969.



10:

11

12.

13.

14.

Trott, W.J., and Yeh, W. W.-G., “Optimization
of Multiple Reservoir Systéms,” Journal of the
Hydraulics Division, ASCE, Vol. 99, No. HY
10, Qctober 1073, pp. 1865~1884..

Yeh, W. W-G,, “Real-Time Reservoir Operation:
The California Cantral Valley Preojct - Case
Study,” Proceedings of the National Workshop
on Reservoir: Systems Opergtion, University of
Colordo, Boulder, 13~17,
1979, pp.217~227.

P. Nopmongcol and A. Askew, “Multilevel Inc-
remental Dynamic Programming”, Water Res-
ources Research. 12(6), 1201~1297, 1976.

M. Heidari, V.T. Chow, P.V, Kokotovic and
D.D. Meredith, “Discrete Differential. Dynamic
Programming Approach to Water Resources

Colorado, August

Systems Optimization”, Water Resources Res-
earch, vol. 7, No. 2, April 1971.

V.T. Chow and G. Crotes-Rivera, “Applications
of DDDP in Water Resources Planning”, = Res.
Rep. 78, Univ. of Ill. Water Resour. Center,
Urbana, 1974.

A. Turgeon, “Incremental Dynamic Programm-
ing may Yield Nonoptimal Solutions”, Water
Resources Research, vel. 18, No. 6,pp. 1599~
1604, Dec. 1982.

D.M. Murray and S.J. Yakowitz, “Constrained
Differential Dynamic Programming and Its Ap-
plications to Multireservoir :Control”, Water
Resources Research, vol. 15, No. 5, QOct 1979.
DH Jacobson and D Q Mayne, Differential
Dynamic Programming”, Elsevier, New York,
1970.

R. Fletcher, “A General Quardratic Programm-

ing Algorithm”, J. Inst Math. Its Appl., 7,

15.

16

17.

18.

18.

20.

21

22.

23.

76~91, 1971.
JH Lee, “The Necessity of Multireservoir Ma-
nagement and an Alternative of Release Rule”,
A% At PP, vol 13, 1983
Lee Jae:Hyoung, “A Basic Study for Optimum
Ogpfrations of Multireservoirs for Water Utilis-
ations”, %5 diga FE4, vol 123, 1982.
N B Nedeljkovic, “New Algorithms fbr Uncon-
strained Nonlinear Optimal ‘Control Problems”,
IEEE Transactions on Automatic Control, Vel.
AC-26, No. 4, Aug, 1981.
N.B. Nedeljkovic, “New Algorithms for Discrete-
time Optimal Control Systems”, School of Ma-
thematical and Physical Sciences Murdoch
University, Western Australia, Nov. 1982. 10.
D.Q. Mayne and E. Polak, “First-order Strong
Variation Algorithms for Optimal Contrdl”, J.
of optimization Theory and Appl., vol. 16,
No. 3/4,. 1975.
W.W-G. Yeh, A.M. ASCE, Leonard Becker, and
Wen-Sen  Chu, “Real-Time Hourly Reservoir
Operation”, J. of the w@ter Resources Planning
and Management Division, Sep. 1979.
K. Ohno, “A New Approach to Differential Dy-
namic Programming for Discrete Time Syste-
ms”, IEEE Transactions on Automatic Control,
vol. AC~23, No. 1, Feb. 1978.
Bellman, R. and S. Dreyfus, “Applied Dynamic
Programming”, Princeton University Press,
Princeton, N. J., 1962.
J.M. Ortega and WW.C. Rheinboldt, “Iterative
Solution of Nonlinear Egquations in Several
Variables,” New York, Academic, 1970.
(5% - 1984, 4. 28)

NS e





