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End-to-End Quality of Service Constrained Routing and
Admission Control for MPLS Networks

Desire Oulai, Steven Chamberland, and Samuel Pierre

Abstract: Multiprotocol label switching (MPLS) networks require
dynamic flow admission control to guarantee end-to-end quality of
service (QoS) for each Internet protocol (IP) traffic flow. In this
paper, we propose to tackle the joint routing and admission con-
trol problem for the IP traffic flows in MPLS networks without
rerouting already admitted flows. We propose two mathematical
programming models for this problem. The first model includes
end-to-end delay constraints and the second one, end-to-end packet
loss constraints. These end-to-end QoS constraints are imposed not
only for the new traffic flow, but also for all already admitted flows
in the network. The objective function of both models is to mini-
mize the end-to-end delay for the new flow. Numerical results show
that considering end-to-end delay (or packet loss) constraints for
all flows has a small impact on the flow blocking rate. Moreover,
we reduces significantly the mean end-to-end delay (or the mean
packet loss rate) and the proposed approach is able to make its de-
cision within 250 msec.

Index Terms: Admission control mechanism, delay constraints,
end-to-end QoS constraints, mathematical programming models,
multiprotocol label switching (MPLS) networks, packet loss con-
straints, quality of service (QoS).

L. INTRODUCTION

Multiprotocol label switching (MPLS) networks are typically
designed to offer end-to-end quality of service (QoS) for In-
ternet protocol (IP) traffic flows. Since QoS is important, for
instance, for interactive voice and video applications, dynamic
fiow admission control is a central mechanism to accept or reject
a new flow based on the QoS level requested and the available
resources in the network. If there is no mechanism, the network
could admit a new flow that overloads one or more links and
then downgrade the QoS of several flows. Traffic routing is also
an important mechanism in that context to find a path to the
destination router while respecting QoS constraints. The admis-
sion control could use the routing results, but it may be indepen-
dent from routing. For instance, even if there exists a feasible
path, the admission control could reject a flow based on poli-
cies. However, most of the admission control mechanisms are
routing-based.

Typically, QoS constraints are twofold: link constraints or
path constraints. A link constraint is applicable locally to a link
whereas path constraints are end-to-end. Examples of path con-
straints are end-to-end delay, packet loss, jitter, and bandwidth.
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Those constraints could also be considered locally to a link.

The admission control could be centralized [1], [2] or dis-
tributed [3], [4]. In the former case, a server gathers information
on the network state to make the decision. In the latter, the edge
routers keep total or partial information on the network state and
the decision is made by the ingress node. A centralized server
may imply a longer setup delay, but the distributed approach is
subject to non-optimal decisions. Moreover, the admission con-
trol could be reservation based [1] or measurement based [5].

Even though many authors have worked in this area, most
of the proposed mechanisms want to satisfy end-to-end delay
or packet loss constraints for the new request without consider-
ing those constraints explicitly for the already admitted flows.
To our knowledge, no solution has been proposed to satisfy the
end-to-end delay constraints nor the end-to-end packet loss con-
straints of all flows without rerouting one or more already es-
tablished flows. In this paper, the term “rerouting” a flow means
finding a new path for this flow and using it for all packets form-
ing this flow (i.e., no “flow splitting” is allowed). We want to
avoid rerouting because it may be service affecting.

In this paper, we propose two models for the joint routing
and admission control problem for the IP traffic flows in MPLS
networks. The term joint routing and admission control means
that the decision to admitted of not a new flow is taken simul-
taneously with the routing procedure, i.e., finding a set of label
switched paths (1.SPs) for the new flow to reach the destina-
tion. The first model includes end-to-end delay constraints and
the second one, end-to-end packet loss constraints. These con-
straints are imposed not only for the new traffic flow, but also for
all already admitted flows. The objective function is to minimize
the end-to-end delay for the new flow.

The rest of the paper is organized as follows. Section II pre-
sents a literature review related to routing and admission control
mechanisms. Section Il presents preliminaries essential for un-
derstanding the proposed models. Section I'V presents the model
and numerical results for the joint routing and admission con-
trol (JRAC) with end-to-end delay constraints. In this paper, the
models are solved to optimality. In fact, before spending time
and efforts to develop heuristic algorithms, we first want to ver-
ify the value of the proposed models by solving them to optimal-
ity. Section V presents the model and numerical results for the
JRAC with packet loss constraints. Finally, conclusion remarks
are presented in Section VI.

II. RELATED WORKS

Routing-based admission control such as constraint-based
routing (e.g., with delay or packet loss constraints) is an impor-
tant area of research. For instance, Kodialam and Lakshman [6]
proposed the minimum interference routing algorithm (MIRA).
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The objective is to route the flow request over a path which min-
imizes the interference with possible future requests. Bagula ef
al. [7] introduced the least interference optimization algorithm
(LIOA). LIOA calculates a cost for each link based on the num-
ber of connections through the link and the remaining capacity
and then solved a shortest path. LIOA is less time consuming
than MIRA and provides less blocking. Capone et al. [1] pro-
pose a virtual flow deviation method which allows to split and
balance the flows among several paths. Widyono [2] presents
an optimal centralized algorithm to find the least cost delay-
constrained path. The algorithm (called constrained Bellman-
Ford algorithm) performs a breadth-first search to find the op-
timal path. It is important to mention that end-to-end packet
loss constraints are multiplicative constraints that can be trans-
formed into additive constraints. Therefore, the algorithms for
delay-constrained routing problems could be applied to packet
loss constrained routing problems.

A more difficult problem is the multiconstrained admission
control that considers simultaneously several constraints like de-
lay, jitter, packet loss and bandwidth. The solutions proposed
by Cui ef al. [8] and Yuan [9] aimed at precomputing “optimal”
constrained shortest paths. However, with dynamic traffic flows,
the paths may not be optimal for the future requests. Jaffe [10]
suggests to linearly combine the weights related to each con-
straint in order to obtain a composite weight for every link. The
shortest paths are found using this composite weight. Another
approach is the fallback algorithm described in [11]. The prin-
ciple is to sequentially compute the shortest paths with regard
to one QoS measure while hoping that it will satisfy all the con-
straints.

The admission control can also be done at link (or node) level
where each link (or node) has a QoS threshold that cannot be
exceeded (e.g., see Cui ef al. [12], Nordstrom and Dziong [13]
and Spitler and Lee [14]). The complexity of the problem is then
reduced but the end-to-end QoS may not be fulfilled.

When doing the admission control for a new request, the ser-
vice provider has to meet the QoS requirements of the already
admitted flows. Indeed, most of the QoS measures such as delay
and packet loss are related to the volume of traffic passing on the
links. Therefore, the impact of accepting the new flow request
has to be evaluated. In that sense, Khan et al. [15] introduce a
utility model for optimal routing and admission control. Upon a
request, a revenue function is maximized while observing every
session with a QoS guarantee. k shortest paths are computed for
each connection and the one that minimizes the revenue func-
tion is chosen. The algorithm then solve a global optimization
problem for each request, which is time-consuming. To get op-
timal solution of each problem, the authors allow to reroute the
flows, which can be service affecting. Ali er al. [3] propose an
approach to reserve bandwidth for the already admitted flows to
respect delay constraints. Their approach is based on the work
by Paresh et al. [16]. The main drawback is that only link ad-
mission control is considered and this may not be enough for
end-to-end delay objectives.

As mentioned before, no authors have considered the joint
routing and admission control problem (with end-to-end delay
and/or packet loss constrained) without rerouting while guaran-
teeing end-to-end QoS for all flows in the network.
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III. PRELIMINARIES
A. The Notation

The following notation is used throughout the paper.

Sets: Let IV the set of nodes (routers), M, the set of unidi-
rectional links, L, the set of unidirectional LSPs, P}, the set of
paths joining all origin-destination pairs composed by at most
h LSPs and finally, let T" be the set of already admitted flows
(where the flow ¢ € T starts at node O(¢) € N, terminates
at node D(t) € N and has a traffic request of o’ (in bps), a
maximum delay limit of 4 (in sec) and a maximum end-to-end
packet loss rate limit of ¢?).

Constants: Let y}; be a 0-1 constant such that yj; = 1 if and
only if the flow ¢ € T passes on the link (4, j) € M and 2} a

0-1 constant such that z{* = 1 if and only if the LSP (a,b) € L
passes on the link (4, j) € M.

Delay and packet loss functions: Let d;;(f;;) be the delay
on the link (%, 7), pi;(fi;), the packet loss rate on the link (3, 7),
and 7;;(f;;), the packet transmit rate on the link (¢, j), that is,
7i;(fi;) = 1 — pij(fi;). In this paper, the M /M /1/k queuing
model is used [17]. As a result,

p(L+ kot — (k + 1)p%)

dij(fij) = Ml p)i— g T (1
pij(fig) = 1 = ri5(fig) = qkfl—p;fl) 2
A= % (3)

b= f—j )

where

« A, the mean arrival rate (in packet/sec) on the link (4, 5);

« p, the average utilization of the link (¢, §);

o K, the buffer size (in packets);

« £, the mean packet length (in bits);

o ¢, the capacity (in bps) of the link (7, 7);

o fi;. the traffic (in bps) on the link (¢, 7) and finally,

o a;;, the propagation delay on the link (4, j) plus the pro-

cessing delay at node ¢ € NV (in sec).

Since this model is easy to analyze and considering that any de-
lay and packet loss models can be used with the proposed JRAC
framework, we have selected this model. Indeed, the delay and
packet loss parameters are only input parameters of the proposed
JRAC framework. In a real network, the delay and the packet
loss on a link can be measured by the routers and then, only
the delta parameters have to be estimated using, for instance,
stochastic models.

Variables: Let 2., be a 0-1 variable such that z,, = 1 if
and only if the new flow passes on the LSP (a, b) and y;;, a 0-1
variable such that y;; = 1 if and only if the new flow passes on
the link (4, 7).

B. Problem Formulation and Preprocessing

The joint routing and admission control problem proposed in
this paper consists in finding a path for the new flow from its ori-
gin node ¢ to its destination node d and having a traffic request
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of a and with an end-to-end delay limit of 3 or an end-to-end
packet loss ratio limit of ¢ while considering already admitted
flows in the network. If such a path does not exist, the new flow
is blocked.

We consider a logical topology already laid. This topology
is formed by LSPs set up between the edge nodes (routers). In
this paper, there is one LSP between each pair of edges nodes
and an LSP is seen as one hop in the logical topology. The LSPs
are routed using Dijkstra’s shortest path algorithm. The LSPs’
bandwidth is adjusted upon acceptance of new flows. A protocol
like RSVP [18] could be used to adjust bandwidth for the LSPs.
Since a flow can use multiple LSPs, the IP header is inspected
at an LSP termination to figure out if the current nodes is the
destination or if the packet has to be forward through another
LSP.

To formulate the mathematical models, preprocessing is nec-
essary. Note that if the new flow does not pass on the link (7, 7),
the traffic on that link will be

Fij=> o'yl (5)

tcT

and the delay on the link (7,5) will be D;; = d; (Fij), the
packet loss rate P;; = p;;(F;;) and the packet transmit rate
Ry =1- F;;. Otherwise, the traffic on that link will be

teT

and the delay on the link (i, ) will be D;; = d;;(Fy;) =
D;; + AD;;, the packet loss rate P;; = p;;(£';;) and the packet
transmit rate R;; = 1 — P;;.

Similarly, if the new flow does not pass on the LSP (a, b), the
end-to-end delay, the transmit rate and the packet loss rate are

respectively given by the following equations

Doy = > Dijzgh (7)
(i,7)eM

Rw= [ Ry ®)
(i,j)EM:zfjbzl

Pab =1~ Rab- (9)

Otherwise, if the new flow passes on the LSP (a, b)

]

Day= > Diyjzfl = Doy + ADyy (10)
(4,5)eM

Rap = H Ry (1D
(i,j)EM:zgjbzl

Pu=1—Ry. (12)

IV. DELAY CONSTRAINED ADMISSION CONTROL
A. The Model

The mathematical model for the joint routing and admission
control problem in MPLS networks without flow rerouting and

with end-to-end delay constraints, denoted JRAC-D (joint rout-
ing and admission control with delay constraints), can now be

given
JRAC-D:
min Z DovZap (13)
{zapn:(a,b)eL} (abel
subject to
vii = Y 2 Ta, V(i,j) € M (14)
(a,b)eL
0<y; <1, V(,j)ecM (15)
Y waw<h (16)
(a,b)eL
> (Dij+ D)yl <8 Vel (A7)
(i,j)e M
> Dapar <8 (18)
(a,b)eL

1 ifa=o0

Y za— Y wme=1 -1 ifa=d VYaeN (19

bi(ab)EL  biba)el 0  otherwise
zay € {0,1}  V(a,b) € L. (20)

The objective function (13) of JRAC-D is to minimize the
end-to-end delay for the new flow. Constraints (14) force the
variable y;; to be equal to the number of LSPs used by the new
flow passing on the link (i, 7) and constraints (15) impose this
number be less than or equal to one, i.e., the new flow is al-
lowed to pass on a link at most once. Note that the y; ; variables
can be removed from the model (i.e., constraints (14) and (15)
can be combined in a single expression and the y, ; variables
in (17) can be replaced with the summation term in (14)). How-
ever, the model is more readable with those variables Con-
straint (16) limits the number of L.SPs in the path used by the
new flow to be at most %. This limit is applied to facilitate the
admission control process. It allows us to use a path-based ap-
proach. Rather than scanning every flow during the admission
control process, we just scan the possible paths composed with
1,2,---, h LSPs. Constraints (17) impose each already admit-
ted flow in the network to respect the end-to-end delay limit
and constraint (18), the new flow to respect the end-to-end delay
limit. Constraints (17) and (18) are important because they force
all flows to respect the QoS requirements. Constraints (19) are
the flow conservation constraints and, finally, constraints (20)
are integrality constraints.

JRAC-D is NP-hard (transformation from the shortest wei-
ght-constrained path problem [19]). However, since the number
of integer variables is small, JRAC-D can be solved to optimal-
ity for real-size instances of the problem within a small amount
of computational time.
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B. The Reduction Algorithm

Since this number of constraints (17) is equal to |T| (i.e., the
number of already admitted flows), it could be computationally
expensive to consider all these constraints. However, these con-
straints can be easily reduced as follows. First note that only
traffic flows that share a link with the new one will be affected.

A path-based approach is considered. As mentioned before, a
path is a set of LSPs (i.e., one or more (a,b) € L) used from an
origin node to reach a destination node. Let D;ffm be the end-to-
end delay limit for a given path p, i.e., the minimum of the 3
(i.e., the maximum end-to-end delay limit) of each flow ¢ using
the path p from its origin to its destination. If there is no flow
using the path p, ng = oo (i.e., set to a very large value). In
this paper, to reduce the number of paths, we limit the maximum
number of LSPs composing a path to two (i.e., h = 2). There-
fore, we maintain a table of all LSPs and all chains of two L.SPs
not forming a cycle. For each path, Dzljm is computed.

We define Ep the delay of the path p if the new flow passes
on that path, i.e., the sum of the D, for all LSPs (a, b) forming
the path p. If Dy, is less than or equal to D5™, we do not need
to consider the end-to-end delay constraints for all flows using
that path. Indeed, constraints (17) could be rewritten as follows

> (Dij+yiAD;)2 <DE™ ¥pe Py Dy > DE™.
(a,b)yelLnp (i,j)eM
(21)
The reduction algorithm is now given.
Reduction Algorithm
Step 1: (Initialization)
1.1 For all (i,5) € M, set Fy; :=
Dij = d”(F”) o
1.2 Forall (a,b) € L, set Dy, := Z(i)j)eM:z#:
13 For all p € Py, set D™ =

Z(a,b)EL:(a,b)Gp Dap.
Step 2: (Model generation)

2.1 Generate the model JRCA-D without constraints (17).
2.2 For each path p € P, do
IfD, > D;im, add the following constraint in the model

Z Z (Dij + yijADij) Zf]b < D]ljm.

(a,b)ELNp (3,5)eM

Step 3: Solve the model. (In this paper, the CPLEX Mixed Inte-
ger Optimizer 9.0 [20] is used for this step.)

C. Numerical Results

In this section, we evaluate the performance of the pro-
posed routing-based admission control mechanism. All algo-
rithms were programmed in the C language on a Linux work-
station with 8 GB of RAM and a 2.4 GHz processor. For solv-
ing the model JRAC-D, the CPLEX Mixed Integer Optimizer
9.0 (see [20] for more information about CPLEX) is used. Note
that the algorithm used by the CPLEX is the branch-and-bound
algorithm. The default settings of CPLEX are used.

We perform tests on the well-known MIRA network, pre-
sented in Fig. 1, that have been used for simulations in several
papers (see, for instance, [6] and [7]). In this figure, the dark
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Fig. 1. The MIRA network.

Table 1. Features of the test networks.

[N]  |7] Number of Number of
edge nodes links
5 400 3 10
10 800 6 15
20 1600 12 30
30 2400 18 45
40 3200 24 60
50 4000 30 75
60 4800 36 90
70 5600 42 105
80 6400 48 120

lines are 48 Mbps links and the light lines are 12 Mbps links.
The nodes not connected to dark lines are the edges nodes.

In addition to the MIRA network, random networks are used
to assess the proposed approach for large-size instances of the
problem. Those networks are generated as follows: we first built
an Hamiltonian cycle (for two-connectivity) and additional links
are randomly added. The capacity of each link is set to 100 Mbps
and 60% of the nodes are chosen to be edge nodes. The features
of the random networks are presented in Table 1.

The traffic flows are randomly generated. For each request,
we randomly choose a pair of origin-destination edge nodes. For
the MIRA network, we generate sets of 5000, 6000, 7000, and
8000 requests. The bandwidth of each flow is randomly taken
(with equal probability) from the set {10, 20, 30, 40} kbps. For
the random networks, each flow has a bandwidth of 1 Mbps.

For the tests, the end-to-end delay limit of each request is
randomly taken from the set {50, 100, 150, 200, 250, 300} in
msec and, finally, the packet length is set to 1500 bytes and the
buffer size to 432 kbytes (i.e., k = 288 packets) or 1200 kbytes
(i.e., k = 800 packets).

In this section, JRAC-D is compared to three other algo-
rithms.

e LIOA [7]: This algorithm computes the least interference

path. The link cost on the link (4, j) is calculated using the
formula

_Jw l—w

where I;; is the number of flows carried on link (%, j) and
S;; is the remaining reservable bandwidth on link (4, 7).
Simulations proved that w = 0.5 provide better results re-
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garding blocking rate. LIOA, also consider an end-to-end
delay constraint for the new flow;

» LIOA-D: LIOA with additional end-to-end delay con-

straints for all flows;

o JRAC-D1: JRAC-D with h = 1.

The metrics of interest to evaluate the performance of our
mechanism are the flow blocking rate, the mean end-to-end de-
lay, the ratio of constraints (17) violated (i.e., the proportion of
flows exceeding their delay limit), and finally, the CPU execu-
tion time.

Figs. 2 and 3 present the flow blocking rate for the MIRA
network and Figs. 4 and 5 for the random networks. In each sce-
nario, JRAC-D provides the lowest blocking rate with a maxi-
mum of 33%. This is due to the limit on the number of LSPs per
path and to the objective function chosen, i.e, minimizing the
end-to-end delay for the new flow. Indeed, minimizing end-to-
end delay reduce the impact of the new flow on the admission of
future requests. LIOA-D, is the second best algorithm regarding
blocking rate. The introduction of end-to-end delay constraints
for all flows contribute to limit the delay on each link which is
good to accept future requests.

For the MIRA network, LIOA provides better results than
JRAC-D1, but with a difference less than 4%. We observe that
this difference decreases when the number of connections in-
creases. For the random networks, JRAC-D1 performs better
than LIOA. This can be explained by the fact that JRCA-D im-
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Fig. 5. Flow blocking rate for & = 800 (random networks).

poses a limit on the number of LSPs per path and that its objec-
tive function is to minimize the end-to-end delay.

Figs. 6 and 7 present the end-to-end delay for the MIRA net-
work and Figs. 8 and 9 for the random networks. We observe
that for all scenarios and algorithms except for LIOA, the mean
end-to-end delay is less than 25 msec. For the LIOA algorithm,
the peak delay is 230 msec. This may result from the fact that
LIOA allows longer paths. Moreover, delays are higher when
using k = 800, because there is more waiting time in the buffers.

Figs. 10 and 11 present the mean CPU execution time for the
proposed admission control mechanism. We illustrate the worst
cases, i.e., when k& = 800. These figures show that this approach
can be used for real-size networks and the decision time (to ad-
mit or not a new flow) is less than 245 msec (including the pre-
processing and the model resolution). For the MIRA network,
the total time is under 3.5 msec. CPLEX takes less than 50 msec
to solve the model. Note that for £ — 288, the total time is under
200 msec.

To conclude this part, we can say that JRAC-D provides good
results. Qur approach allows us to guarantee the end-to-end de-
lay limits for all flows without rerouting. Moreover, JRAC-D
provides less blocking rate than other methods while running
in a reasonable amount of time. We currently work on efficient
heuristics to decrease the CPU execution time to find quasi-
optimal solutions.
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V. PACKET LOSS CONSTRAINED ADMISSION
CONTROL
A. The Model

The mathematical model for the joint routing and admission
control problem in MPLS networks without flow rerouting and
with end-to-end packet loss constraints, denoted JRAC-P (joint
routing and admission control with packet loss constraints), can
now be given
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JRAC-P:

. D 22
{zab:r(rzlzl,g)eL}( Z abTab (22)

a,b)el
subject to (14)—(16), (19), (20), and
Fij t ¢
> (In Rij+yi;In oy > In(l-¢) VieT (23)
(G.5)eM K
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> zanRa > In(l - ¢). (24)

(a,b)eL

The objective function (22) of IRAC-P is to minimize the end-
to-end delay for the new flow. This objective function is used be-
cause delay is an important QoS parameter for most of the appli-
cations. Constraints (23) and (24) impose all flows to respect the
packet loss requirements. These linear constraints are obtained
by logarithmic transformations. To enumerate these constraints,
the preprocessing should verify that ¢ < 1, ¢¢ < 1foralit e T,
Rij > 0forall (i,5) € M, R;; > 0 for all (i,j) € M and
Rap > Oforall (a,b) € L.

As for JRAC-D, JRAC-P is NP-hard. However, we will de-
monstrate that it requires a small amount of computational time
to solve real-size instances of the problem to optimality.

For the same reasons and with the same approach described
in Section IV-B, we can reduce the number of constraints (23).

B. Numerical Results

For the tests, the end-to-end packet loss limit of each flow
is randomly selected from the set {0.01, 0.02, 0.03, 0.04, 0.05}.
The other test parameters are the same as those presented in Sec-
tion IV-C. Here, JRAC-P1 is similar to JRAC-P but with a maxi-
mum of one LSP per path and LIOA-P is the same as LIOA with
end-to-end packet loss constraints for all flows.
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Figs. 12-15 present the flow blocking rate for the test net-
works. Note that, as expected for the MIRA network, the block-
ing rate increases with the load. In all scenarios, JRAC-P pro-
vides the lowest blocking rate with a maximum of 30%. The
second best algorithm is LIOA-P with a maximum of 4% more
blocking than JRAC-P.

Figs. 16-19 present the mean end-to-end packet loss. As ex-
pected, since the constraints (23) assure the end-to-end packet
loss constraints to be respected, we obtain better results with
those constraints. Whenever our new constraints are applied, the
mean end-to-end packet loss is under 0.5%.

Finally, Figs. 20 and 21 show the mean CPU execution time
for the proposed admission control mechanism. These figures
assess that a reasonable amount of computational time is neces-
sary for the proposed approach for real-size networks. The to-
tal decision time is less than 250 msec. We currently work on
efficient heuristics to decrease the CPU execution time to find
quasi-optimal solutions.

VI. CONCLUSIONS

In this paper, we have proposed two models for the joint rout-
ing and admission control problem for the traffic flows in MPLS
networks. The first model includes end-to-end delay constraints
and the second one, end-to-end packet loss constraints. These
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end-to-end QoS constraints are imposed not only for the new
traffic flow, but also for all already admitted flows in the net-
work. The objective function is to minimize the end-to-end de-
lay on the path used by the new flow. These models are solved
exactly (after preprocessing) within the admission control mech-
anism.

The numerical results show that considering end-to-end delay
(or packet loss constraints) for all flows while limiting the num-
ber of LSPs per path, permit to offer less flow blocking rate.
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Moreover, we reduced significantly the mean end-to-end delay
(or the mean packet loss rate) and the proposed approach is able
to make the decision to admit or not a new flow in the network
within 250 msec.

There are several avenues of research open at this point. First,
we want to consider other objective functions like revenue func-
tion. We currently work on efficient heuristics to find good
(quasi-optimal) solutions rapidly. It will also be interesting to
test our approach on multiconstrained models.
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