• 제목/요약/키워드: dynamic compressive behavior

검색결과 111건 처리시간 0.027초

벌크형 비정질 Zr계 합금의 결정화 열처리에 따른 동적변형 거동 (Dynamic Deformation Behavior of Zr-Based Bulk Amorphous Alloy after Annealing Treatments)

  • 장재준;이병주;황진일;박익민;조경목;조영래
    • 한국재료학회지
    • /
    • 제14권3호
    • /
    • pp.181-185
    • /
    • 2004
  • The mechanical properties of a bulk amorphous alloy ($Zr_{41.2}$ $Ti_{13.8}$ /$Cu_{10}$ $Ni_{10}$ $Be_{22.5}$ /at.%) before and after an annealing treatment were investigated. For the bulk amorphous alloy, the compressive strength was about 2.0 GPa, irrespective of the strain rates in the range of $10^{-4}$ to $10^3$$ sec^{-1}$ . Fine-sized nanocrystalline particles (10~100 nm) were precipitated homogeneously in the bulk amorphous matrix after the annealing treatments. Compared to the bulk amorphous materials, these composite materials, composed of the nanocrystalline phases and a bulk amorphous matrix had much different mechanical properties. The strength and strain of coposite materials measured by a compressive test showed a peak-maximum values at 7 vol.% of the nanocrystalline phases. The values in higher volume fraction of the crystalline phases in the amorphous matrix were decreased, as measured by both quasi-static and high strain rate. The decrease in fracture strength is due to presence of the dispersed large-crystalline phases in the amorphous matrix.

High-Temperature Deformation Behavior of Ti3Al Prepared by Mechanical Alloying and Hot Pressing

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.57-60
    • /
    • 2020
  • Titanium aluminides have attracted special interest as light-weight/high-temperature materials for structural applications. The major problem limiting practical use of these compounds is their poor ductility and formability. The powder metallurgy processing route has been an attractive alternative for such materials. A mixture of Ti and Al elemental powders was fabricated to a mechanical alloying process. The processed powder was hot pressed in a vacuum, and a fully densified compact with ultra-fine grain structure consisting of Ti3Al intermetallic compound was obtained. During the compressive deformation of the compact at 1173 K, typical dynamic recrystallization (DR), which introduces a certain extent of grain refinement, was observed. The compact had high density and consisted of an ultra-fine equiaxial grain structure. Average grain diameter was 1.5 ㎛. Typical TEM micrographs depicting the internal structure of the specimen deformed to 0.09 true strain are provided, in which it can be seen that many small recrystallized grains having no apparent dislocation structure are generated at grain boundaries where well-developed dislocations with high density are observed in the neighboring grains. The compact showed a large m-value such as 0.44 at 1173 K. Moreover, the grain structure remained equiaxed during deformation at this temperature. Therefore, the compressive deformation of the compact was presumed to progress by superplastic flow, primarily controlled by DR.

Effect of fly ash and plastic waste on mechanical and durability properties of concrete

  • Paliwal, Gopal;Maru, Savita
    • Advances in concrete construction
    • /
    • 제5권6호
    • /
    • pp.575-586
    • /
    • 2017
  • The disposal of polythene waste and fly ash is causing serious threat to the environment. Aim of this study is to decrease environmental pollution by using polythene waste and fly ash in concrete. In this study, cement was partially replaced with 0%, 5%, 10%, 15% and 20% fly ash (by weight) and plastic waste was added in shredded form at 0.6% by weight of concrete. The specimens were prepared for the concrete mix of M25 grade and water to cementitious material ratio (w/c) was maintained as 0.45. Fresh concrete property like workability was examined during casting the specimens. Hardened properties were found out by carrying out the experimental work on cubes, cylinders and beams which were cast in laboratory and their behavior under test were observed at 7 & 28 days for compressive strength and at 28 days for density, flexural strength, dynamic modulus of elasticity, abrasion resistance, water permeability and impact resistance. Overall results of this study show that addition of 0.6% (by weight of the concrete) plastic waste with 10% (by weight of cement) replacement of cement by fly ash result an improvement in properties of the concrete than conventional mix.

부산 고결점토의 변형률 의존적 동적거동특성에 관한 연구 (Strain-dependent dynamic properties of cemented Busan clay)

  • 김아람;장일한;조계춘;심성현;강연익
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 2차
    • /
    • pp.61-67
    • /
    • 2010
  • Thick soft clay deposits which are generally located at the west and south coast of the Korean peninsula have complicated characteristics according to their orientation and formation history. Thus, several geotechnical problems could possibly occur when those soft clay deposits are used as foundations for marine structures. Deep cement mixing (DCM) method is one of the most widely used soft soil improvement method for various marine structures, nowadays. DCM method injects binders such as cement into the soft ground directly and mixes with the in-situ soil to improve the strength and other geotechnical properties sufficiently. However, the natural impacts induced by dynamic motions such as ocean waves, wind, typhoon, and tusnami give significant influences on the stability of marine structures and their underlaying foundations. Thus, the dynamic properties become important design criteria to insure the seismic stability of marine structures. In this study, the dynamic behavior of cemented Busan clay is evaluated. Laboratory unconfined compression test and resonant column test are performed on natural in-situ soil and cement mixed specimens to confirm the strength and strain-dependent dynamic behavior variation induced by cement mixing treatment. Results show that the unconfined compressive strength and shear modulus increase with curing time and cement content increment. Finally, the optimized cement mixing ratio for sufficient dynamic stability is obtained through this study. The results of this study are expected to be widely used to improve the reliability of seismic design for marine structures.

  • PDF

굴삭기의 정적/동적 강도 해석법에 대한 연구 (Study on the Static and Dynamic Structural Analysis Procedure of Excavators)

  • 정준모;김규성;장영식;최익흥;허민수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.537-543
    • /
    • 2003
  • This paper presents the improved procedure to assess static and dynamic strength of crawler type excavators. A fully integrated model including front attachment and chassis was prepared for structural analysis. In this paper, two types of loading input methods were investigated and the method imposing digging force directly on bucket tooth was more convenient than imposing cylinder reaction force on cylinder pin even if the two methods showed no discrepancy in analysis results. Static strength analysis was carried out for eight analysis scenarios based on two extreme digging positions, maximum digging reach position and maximum digging force positions. The results from static strength analysis were compared with measured stresses, cylinder pressures and digging forces and showed a good quantitative agreement with measured data. Dynamic strength analysis was carried out for simple reciprocation of boom cylinders. It was recognized that the effect of compressive stiffness of hydraulic oil was very important for dynamic structural behavior. The results from dynamic strength analysis including hydraulic oil stiffness were also compared with measured acceleration data and showed a qualitative agreement with measured data.

  • PDF

액상가압공정으로 제조된 STS304와 Ta 섬유 강화 Zr계 비정질 복합재료의 준정적 및 동적 변형거동 (Quasi-Static and Dynamic Deformation Behavior of STS304- and Ta-fiber-reinforced Zr-based Amorphous Matrix Composites Fabricated by Liquid Pressing Process)

  • 김용진;신상용;김진성;허훈;김기종;이성학
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.477-488
    • /
    • 2010
  • Zr-based amorphous alloy matrix composites reinforced with stainless steel (STS) and tantalum continuous fibers were fabricated without pores or defects by a liquid pressing process, and their quasi-static and dynamic deformation behaviors were investigated by using a universal testing machine and a Split Hopkinson pressure bar, respectively. The quasi-static compressive test results indicated that the fiberreinforced composites showed amaximum strength of about 1050~1300 MPa, and its strength maintained over 700 MPa until reaching astrain of 40%. Under dynamic loading, the maximum stresses of the composites were considerably higher than those under quasi-static loading because of the strain-rate hardening effect, whereas the fracture strains were considerably lower than those under quasi-static loading because of the decreased resistance to fracture. The STS-fiber-reinforced composite showed a greater compressive strength and ductility under dynamic loading than the tantalum-fiber-reinforced composite because of the excellent resistance to fracture of STS fibers.

Finite element model updating effect on the structural behavior of long span concrete highway bridges

  • Altunisik, A.C.;Bayraktar, A.
    • Computers and Concrete
    • /
    • 제14권6호
    • /
    • pp.745-765
    • /
    • 2014
  • In this paper, it is aimed to determine the finite element model updating effects on the structural behavior of long span concrete highway bridges. Birecik Highway Bridge located on the 81stkm of Sanliurfa-Gaziantep state highway over Firat River in Turkey is selected as a case study. The bridge consist of fourteen spans, each of span has a nearly 26m. The total bridge length is 380m and width of bridge is 10m. Firstly, the analytical dynamic characteristics such as natural frequencies and mode shapes are attained from finite element analyses using SAP2000 program. After, experimental dynamic characteristics are specified from field investigations using Operational Modal Analysis method. Enhanced Frequency Domain Decomposition method in the frequency domain is used to extract the dynamic characteristics such as natural frequencies, mode shapes and damping ratios. Analytically and experimentally identified dynamic characteristics are compared with each other and finite element model of the bridge is updated to reduce the differences by changing of some uncertain parameters such as section properties, damages, boundary conditions and material properties. At the end of the study, structural performance of the highway bridge is determined under dead load, live load, and dynamic loads before and after model updating to specify the updating effect. Displacements, internal forces and stresses are used as comparison parameters. From the study, it is seen that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %46.7 to %2.39 by model updating. A good harmony is found between mode shapes after finite element model updating. It is demonstrated that finite element model updating has an important effect on the structural performance of the arch type long span highway bridge. Maximum displacements, shear forces, bending moments and compressive stresses are reduced %28.6, %21.0, %19.22, and %33.3-20.0, respectively.

철근 콘크리트 보-기둥 접합부의 부착거동에 대한 콘크리트 강도 및 보강철근의 효과 (Bond of Deformed Bars to Concrete : Effects of Confinement and Strength of Concrete)

  • 최기봉
    • 콘크리트학회지
    • /
    • 제3권2호
    • /
    • pp.115-121
    • /
    • 1991
  • 보-기둥 접합부에서 보의 축방향 철근의 슬립은 정하중 및 동하중 하에서 철근 콘크리트 골조를 손상시키는 중요한 요인중 하나이다. 이 논문은 이형철근의 국부 부착-슬립 특성에 관한 콘크리트강도 및 보강철근에 대해 실행된 실험결과를 요약하였다. 실험결과로부터 부착할렬균열(bond splitting crack)이 기둥은 축방향 철근에 의해 제어되는 한 횡방향 보강철근이 국부부착거동에 직접적인 영향을 미치지 않으며 극한부착강도는 콘크리트강도의 콘크리트강도의 제곱근에 비례해 증가함을 알 수 있었다. 이를 근거로 압축강도에 따른 보강철근 내부의 콘크리트와 이형철근의 국부 부착 응력-슬립 상관관계를 나타내는 실험모델을 유도하였다.

동적 물성치를 고려한 진공 인터럽터 충격특성의 영향인자 분석 (Parameter Study of Impact Characteristics for a Vacuum Interrupter Considering Dynamic Material Properties)

  • 임지호;송정한;허훈;박우진;오일성;안길영;최종웅
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.924-931
    • /
    • 2002
  • Vacuum interrupters in order to be used in various switch-gear components such as circuit breakers, distribution switches, contactors, etc. spread the arc uniformly over the surface of the contacts. The electrodes of vacuum interrupters are made of sinter-forged Cu-Cr materials for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain rate is obtained from the split Hopkinson pressure bar test using disc-type specimens. Experimental results from both quasi-static and dynamic compressive tests are Interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the value of five parameters such as the initial velocity of a movable electrode, the added mass of a movable electrode, the wipe spring constant, initial offset of a wipe spring and the virtual fixed spring constant.

동적하중을 받는 콘크리트보의 파괴거동 (Fracture Behavior of Concrete Beam Subjected to Dynamic Loading)

  • 강성후;김우;박선준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.257-262
    • /
    • 1995
  • In this study, after concrete cylinders were made on the condition of varying water-to -cement ratio, and cured 80 days compressive strength and splitting tensile strength were performed and moduls of elasticy is obtained. The fracture energy was obtained by acting three point bending on the 80cm in length. This test involved static loading test and dynamic loading test. In this work, the new interrelation of the material constants was obtained clearly and the property of the mixture was inspected, including the relation between the fracture energy and all kind of the material constants.

  • PDF