• Title/Summary/Keyword: dynamic compressive behavior

Search Result 112, Processing Time 0.023 seconds

Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer

  • Chen, Shao J.;Yin, Da W.;Jiang, N.;Wang, F.;Guo, Wei J.
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.333-342
    • /
    • 2019
  • Geological dynamic hazards during coal mining can be caused by the failure of a composite system consisting of roof rock and coal layers, subject to different loading rates due to different advancing velocities in the working face. In this paper, the uniaxial compression test simulations on the composite rock-coal layers were performed using $PFC^{2D}$ software and especially the effects of loading rate on the stress-strain behavior, strength characteristics and crack nucleation, propagation and coalescence in a composite layer were analyzed. In addition, considering the composite layer, the mechanisms for the advanced bore decompression in coal to prevent the geological dynamic hazards at a rapid advancing velocity of working face were explored. The uniaxial compressive strength and peak strain are found to increase with the increase of loading rate. After post-peak point, the stress-strain curve shows a steep stepped drop at a low loading rate, while the stress-strain curve exhibits a slowly progressive decrease at a high loading rate. The cracking mainly occurs within coal, and no apparent cracking is observed for rock. While at a high loading rate, the rock near the bedding plane is damaged by rapid crack propagation in coal. The cracking pattern is not a single shear zone, but exhibits as two simultaneously propagating shear zones in a "X" shape. Following this, the coal breaks into many pieces and the fragment size and number increase with loading rate. Whereas a low loading rate promotes the development of tensile crack, the failure pattern shows a V-shaped hybrid shear and tensile failure. The shear failure becomes dominant with an increasing loading rate. Meanwhile, with the increase of loading rate, the width of the main shear failure zone increases. Moreover, the advanced bore decompression changes the physical property and energy accumulation conditions of the composite layer, which increases the strain energy dissipation, and the occurrence possibility of geological dynamic hazards is reduced at a rapid advancing velocity of working face.

Progressive Collapse Resisting Capacity of Braced Frames (가새골조의 연쇄붕괴 저항성능)

  • Kim, Jin-Koo;Lee, Young-Ho;Choi, Hyun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.429-437
    • /
    • 2008
  • In this study the progressive collapse potential of braced frames were investigated using the nonlinear static and dynamic analyses. All of nine different brace types were considered along with a special moment-resisting frame for comparison. According to the pushdown analysis results, most braced frames designed per current design codes satisfied the design guidelines for progressive collapse initiated by loss of a first story mid-column; however most model structures showed brittle failure mode. This was caused by buckling of columns after compressive braces buckled. Among the braced frames considered, the inverted- V type braced frames showed superior ductile behavior during progressive collapse. The nonlinear dynamic analysis results showed that all the braced frame model structures remained in stable condition after sudden removal of a column, and their deflections were less than that of the moment-resisting frame.

Neural Network-Based Prediction of Dynamic Properties (인공신경망을 활용한 동적 물성치 산정 연구)

  • Min, Dae-Hong;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.37-46
    • /
    • 2023
  • Dynamic soil properties are essential factors for predicting the detailed behavior of the ground. However, there are limitations to gathering soil samples and performing additional experiments. In this study, we used an artificial neural network (ANN) to predict dynamic soil properties based on static soil properties. The selected static soil properties were soil cohesion, internal friction angle, porosity, specific gravity, and uniaxial compressive strength, whereas the compressional and shear wave velocities were determined for the dynamic soil properties. The Levenberg-Marquardt and Bayesian regularization methods were used to enhance the reliability of the ANN results, and the reliability associated with each optimization method was compared. The accuracy of the ANN model was represented by the coefficient of determination, which was greater than 0.9 in the training and testing phases, indicating that the proposed ANN model exhibits high reliability. Further, the reliability of the output values was verified with new input data, and the results showed high accuracy.

High Temperature Deformation Behavior of L12 Modified Titanium Trialuminides Doped with Chromium and Copper (크롬 및 구리로 치환한 L12 Titanium Trialuminides합금의 고온변형거동)

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.317-323
    • /
    • 2018
  • Crystal structure of the $L1_2$ type $(Al,X)_3Ti$ alloy (X = Cr,Cu) is analyzed by X-ray diffractometry and the nonuniform strain behavior at high temperature is investigated. The lattice constants for the $L1_2$ type $(Al,X)_3Ti$ alloys decrease in the order of the atomic number of the substituted atom X, and the hardness tends to increase. In a compressive test at around 473K for $Al_{67.5}Ti_{25}Cr_{7.5}$, $Al_{65}Ti_{25}Cr_{10}$ and $Al_{62.5}Ti_{25}Cu_{12.5}$ alloys, it is found that the stress-strain curves showed serration, and deformation rate dependence appeared. It is assumed that the generation of serration is due to dynamic strain aging caused by the diffusion of solute atoms. As a result, activation energy of 60-95 kJ/mol is obtained. This process does not require direct involvement. In order to investigate the generation of serrations in detail, compression tests are carried out under various conditions. As a result, in the strain rate range of this experiment, serration is found to occur after 470K at a certain critical strain. The critical strain increases as the strain rate increases at constant temperature, and the critical strain tends to decrease as temperature rises under constant strain rate. This tendency is common to all alloys produced. In the case of this alloy system, the serration at around 473K corresponds to the case in which the dislocation velocity is faster than the diffusion rate of interstitial solute atoms at low temperature.

Performance Analysis of Friction Damper Considering the Change of the Vertical Force (수직력의 변화를 고려한 마찰댐퍼의 거동 분석)

  • Cho, Sung Gook;Park, Woong Ki;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • In this paper, to protect the piping in nuclear power plants and various plant facilities, we have developed a damper using the friction method and carried out a study to analyze the performance. Friction typed damper means a device for attenuating vibration by generating a frictional force to the bearing and the shaft by applying a compressive force to the MER-Spring. In order to analyze the performance of the damper, the properties of MER-Spring and friction materials were analyzed, a study on the effects of friction was carried out, and the behavior of this equation was established. And, to determine whether deformation of the material and to examine the reliability of the behavior equation established, prototypes was produced and, through a performance test and finite element analysis of a damper made of specimens, they were analyzed. As a result, it is noted that the reliability of the material was confirmed, the coefficient of friction have to be adjusted according to the velocity, cyclic loading test and finite element analysis results show exhibits excellent results. In addition, a review of the dynamic loads in the future shall be performed for the usage in more broad fields.

Strength and Friction Behavior of Cement paste poured in the Bored Pile (매입말뚝의 시멘트풀 강도 및 마찰거동에 관한 연구)

  • Park, Jong-Bae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.31-39
    • /
    • 2004
  • The bored pile is widely used as a low noise and vibration piling method in Korea. However, there is design tendency to minimize the friction capacity of the bored pile because of uncertainty and the quality control specification is not set up. This research analysed the strength characteristics of cement paste after the uniaxial compression test with various condition. Test results show that the compressive strength of cement paste with w/c=0.83 was up to $156.0kgf/cm^2$, and the lower w/c ratio and the longer age, the strength of cement paste increased. Also the higher soil mixing ratio, the strength of soil cement decreased, and too high soil mixing ratio caused the malfuction of soil cement. Also this research analysed the 188 dynamic pile test results which were performed before and after hardening of cement paste. Analysis result showed that the average ultimate unit friction capacity was $9.1tf/m^2$ and this result surpassed the common design criteria of the bored pile.

  • PDF

An Experimental Research to Evaluate Structural Capacity of Pre-stressed Concrete Beam connected with Embedded Steel Plate (강판으로 접합된 프리스트레스트 콘크리트보의 구조성능 평가를 위한 실험연구)

  • Lee, Kyoung-Hun;Kim, Jeom-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.27-33
    • /
    • 2010
  • In this study, a monotonic loading test to estimate structural capacity of 12 meter long full scale precast pre-stressed concrete beam specimen was performed with a 2,000 kN dynamic actuator. A couple of embedded steel plate was installed at the ends of the beam and specimens were connected to steel girder frame with high tension bolts. Nominal compressive strength of pre-stressed concrete beam and slab were 50 MPa and 24 MPa respectively. Two HD25 tensile steel reinforcements were welded on vertical plate of embedded steel plate. Pre-stressed concrete beam specimen was loaded by displacement control method with a certain loading pattern which was repeated loading and unloading with 10mm increment displacement. About 88.34%, 86.97% and 66.83% of displacement restoration ratios were evaluated at elastic, inelastic and plastic behavior region of specimen respectively.

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

A Study on the Strength Characteristics and Rebound Ratio with Respect to Injection Pressure of Shotcrete (숏크리트의 강도 특성과 분사압력에 대한 리바운드율 연구)

  • Jeon, Jun Tai;Moon, In Gi;Lee, Yang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.115-122
    • /
    • 2019
  • Steel Fiber Reinforced Wet-type Shotcrete improves the quality and stabilizes the tunnel by increasing the shear strength of the natural ground by constructing the concrete which attaches the fresh concrete to the predetermined position from the nozzle. The Steel Fiber Reinforced Wet-type Shotcrete improves and reinforces the strength and dynamic behavior characteristics of concrete to suppress the generation and growth of local cracks by increasing the tensile resistance ability. In addition, Steel Fiber Reinforced Wet-type Shotcrete is a shotcrete that improves tensile strength, bending strength, and crack resistance by dispersing discontinuous short steel fibers evenly in concrete. In this study, compressive strength test and bending strength test of shotcrete of NATM tunnel were measured and rebound reduction rate was measured by varying shotcrete putting pressure to 900 RPM, 1,000 RPM, and 1,100 RPM. Therefore, the data that can be applied to domestic NATM tunnel construction are presented.

Seismic Retrofitting Effects of General Hospital Using Self-Centering Energy Dissipative Bracing System (자기복구형 에너지소산 가새시스템을 적용한 종합병원의 내진보강효과)

  • Kim, Taewan;Chu, Yurim;Bhandari, Diwas
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.159-167
    • /
    • 2019
  • 2016 Gyeongju and 2017 Pohang earthquakes led Koreans to acknowledge that the Korean peninsula is not an earthquake-free zone anymore. Among various buildings crucial to after-shock recovery, general hospital buildings, especially existing old ones, are very significant so seismic retrofitting of those must be an important issue. Self-centering energy dissipative(SCED) brace is one of retrofitting methods, which consists of tendon with restoring force and friction device capable of dissipating seismic energy. The strength of the SCED brace is that the tendon forces a structure to go back to the original position, which means residual drift can be negligible. The residual drift is a very important parameter to determine usableness of general hospitals after shock. To the contrary, buckling-restrained braces(BRB) are also a very effective way to retrofit because they can resist both compressive and tensile, but residual drift may exist when the steel core yields. On this background, the seismic retrofitting effect of general hospitals reinforced with SCED braces was investigated and compared to that of the BRD in this study. As a result, although the floor acceleration cannot be reduced, the story drift and residual drift, and the shear demand of walls significantly decreased. Consequently, seismic retrofitting by SCED braces are very effective for domestic low-rise general hospitals.