DOI QR코드

DOI QR Code

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Jeon, J.M. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, K.T. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Yoo, Y.R. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, Y.S. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
  • Received : 2021.02.09
  • Accepted : 2021.02.24
  • Published : 2021.02.26

Abstract

Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

Keywords

Acknowledgement

This work was supported by the KOREA HYDRO & NUCLEAR POWER CO., LTD (No. 2019-Technical-08).

References

  1. W. Deng, Y. An, X. Zhao, C. Zhang, L. Tang, and J. Liu, Surf. Coat. Technol., 399, 126133 (2020). https://doi.org/10.1016/j.surfcoat.2020.126133
  2. I. C. Park and S. J. Kim, Surf. Coat. Technol., 376, 31 (2019). https://doi.org/10.1016/j.surfcoat.2018.08.098
  3. I. C. Park and S. J. Kim, Appl. Surf. Sci., 483, 194 (2019). https://doi.org/10.1016/j.apsusc.2019.03.277
  4. I. I. Silveira, A. G. M. Pukasiewicz, D. J. M. Aguiar, A. J. Zara, and S. Bjorklund, Surf. Coat. Technol., 374, 910-922 (2019). https://doi.org/10.1016/j.surfcoat.2019.06.076
  5. H. Sun, J. Mech. Sci. Technol., 26, 8, 2535 (2012). https://doi.org/10.1007/s12206-012-0633-y
  6. D. G. Shchukim, E. Skorb, V. Belova, and H. Mohwald, Adv. Mater., 23, 1922-1934 (2011). https://doi.org/10.1002/adma.201004494
  7. A.Thiruvengadam, J. Basic Eng., 85, 3, 365 (1963). https://doi.org/10.1115/1.3656610
  8. M. S. Plesset and A. T. Ellis, Mater. Sci., 77, 1055 (1955).
  9. B. Vyas and C. M. Preece, Metall. Trans. A, 8, 915 (1977). https://doi.org/10.1007/BF02661573
  10. I. J. Jang, K. T. Kim, Y. R. Yoo, and Y. S. Kim, Corros. Sci. Tech., 19, 163 (2020). https://doi.org/10.14773/cst.2020.19.4.163
  11. J. A. Jeong, M. S. Kim, S. D. Yang, C. H. Hong, N. K. Lee and D. H. Lee, J. Korean Soc. Marine Eng., 42, 280 (2018). https://dx.doi.org/10.5916/jkosme.2018.42.4.280
  12. S. Y. Lee, K. H. Lee, C. U. Won, S. Na, Y. G. Yoon, M. H. Lee, Y. H. Kim, K. M. Moon, and J. G. Kim, J. Ocean Eng. Technol., 27, 79 (2013). https://dx.doi.org/10.5574/KSOE.2013.27.3.079
  13. J. H. Jeong, Y. H. Kim, K. M. Moon, M. H. Lee, and J. G. Kim, J. Korean Soc. Marine Eng., 37, 877 (2013). https://dx.doi.org/10.5916/jkosme.2013.37.8.877
  14. Y. Huang and D. Ji, Sensors and Actuators B: Chemical, 135, 1, 375 (2008). https://dx.doi.org/10.1016/j.snb.2008.09.008
  15. V. Lefevre, K. Ravi-Chandar, and O. Lopex-Pamies, Int. J. Fract., 192, 1 (2015). https://doi.org/10.1007/s10704-014-9982-0
  16. F. G. Hammitt, N. R. Bhatt, T. M. Mitchell, N. Orlandea, J. M. Stifel, E. E. Timm, and V. M. Wild, Liquid Impingement and Cavitation Studies of Erosion Resistance of Rubber-coated materials for B. F. Goodrich, Report No. UMICH-324490-1-T, The University of Michigan, December (1970).
  17. W. Deng, G. Hou, S. Li, J. Han, X. Zhao, X. Liu, Y. An, H. Zhou, and J. Chen, Ultrasonic - Sonochemistry, 44, 115-119 (2018). https://doi.org/10.1016/j.ultsonch.2018.02.018
  18. S. Hattori and T. Itoh, Wear, 271, 1103-1108(2011). https://doi.org/10.1016/j.wear.2011.05.012
  19. K. H. Light and V. Caccese, Development of a cavitation erosion resistant advanced material system, Project No. UM-MACH-RPT-01-05, The University of Maine, November (2005).
  20. ASTM D695, Standard Test Method for Compressive Properties of Rigid Plastics (2015).
  21. ASTM D790, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials (2017).
  22. ASTM D638, Standard Test Method for Tensile Properties of Plastics (2014).
  23. ASTM D2240, Standard Test Method for Rubber Property-Durometer Hardness (2015).
  24. KS F4936, Coating materials for the protection of concrete, Korean Industrial Standards (2018).
  25. ASTM D2794, Standard Test Method for Resistance of Organic Coatings to the Effects of Rapid Deformation (Impact) (2019).
  26. ASTM D4060, Abrasion Resistance of Organic Coatings by Taber Abraser (2007).
  27. ASTM D4541, Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers (2017).
  28. ASTM G32, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus (2016).