Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.6.317

High Temperature Deformation Behavior of L12 Modified Titanium Trialuminides Doped with Chromium and Copper  

Han, Chang-Suk (Dept. of ICT Automotive Engineering, Hoseo University)
Jin, Sung-Yooun (Dept. of ICT Automotive Engineering, Hoseo University)
Bang, Hyo-In (Dept. of ICT Automotive Engineering, Hoseo University)
Publication Information
Korean Journal of Materials Research / v.28, no.6, 2018 , pp. 317-323 More about this Journal
Abstract
Crystal structure of the $L1_2$ type $(Al,X)_3Ti$ alloy (X = Cr,Cu) is analyzed by X-ray diffractometry and the nonuniform strain behavior at high temperature is investigated. The lattice constants for the $L1_2$ type $(Al,X)_3Ti$ alloys decrease in the order of the atomic number of the substituted atom X, and the hardness tends to increase. In a compressive test at around 473K for $Al_{67.5}Ti_{25}Cr_{7.5}$, $Al_{65}Ti_{25}Cr_{10}$ and $Al_{62.5}Ti_{25}Cu_{12.5}$ alloys, it is found that the stress-strain curves showed serration, and deformation rate dependence appeared. It is assumed that the generation of serration is due to dynamic strain aging caused by the diffusion of solute atoms. As a result, activation energy of 60-95 kJ/mol is obtained. This process does not require direct involvement. In order to investigate the generation of serrations in detail, compression tests are carried out under various conditions. As a result, in the strain rate range of this experiment, serration is found to occur after 470K at a certain critical strain. The critical strain increases as the strain rate increases at constant temperature, and the critical strain tends to decrease as temperature rises under constant strain rate. This tendency is common to all alloys produced. In the case of this alloy system, the serration at around 473K corresponds to the case in which the dislocation velocity is faster than the diffusion rate of interstitial solute atoms at low temperature.
Keywords
intermetallics; solidification; mechanical properties; compression test; activation energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W E. Frazier and J. E. Benci, Scripta Met., 25, 2267 (1991).   DOI
2 H. Mabuchi, H. Tsuda, T. Matsui, and K. Morii, J. Japan. Inst. Met., 64, 1041 (2000).   DOI
3 J. Ternacki and Y. W. Kim, Scripta Met., 22, 329 (1988).   DOI
4 M. B. Winnicka and R. A. Varin, Scripta Met., 23, 1199 (1989).   DOI
5 R. A. Varin, L. Zbroniec, and Z. G. Wang, Intermetallics, 9, 195 (2001).   DOI
6 H. Miyagawa, T. Morikawa, T. Okazaki, H. Nakashima, and H. Yoshinaga, J. Japan. Inst. Met., 60, 367 (1996).   DOI
7 A. H. Cottrell, Dislocations and Plastic Flow in Crystals, p.136, Oxford (1965).
8 A. H. Cottrell and M. A. Jaswon, Proc. Royal Society of London. Series A, Mathematical and Physical Sciences, A199, 104 (1949).
9 A. H. Cottrell, Phil. Mag., 44, 829 (1953).   DOI
10 P. G. McCormick, Acta Met., 19, 463 (1971).   DOI
11 K. S. Kumar and J. D. Whittenberger, J. Mater. Res., 7, 1043 (1992).   DOI
12 R. Lerf and D. G. Morris, Acta Metall., 49, 1091 (1994).
13 T. B. Massalski, J. L. Murray, L. H. Bennett, and H. Baker, Binary Alloy Phase Diagrams, 1st ed., p.157, American Society for Metals (1986).
14 M. Yamaguchi, Y. Umakoshi, and T. Yamane, Phil. Mag., 55A, 301 (1987).
15 A. Raman and K. Schubert, Z. Metallkde., 56, 99 (1965).
16 D. H. Cheon, J. G. Lee, M. H. Oh, and D. M. Wi, Korean J. Met. Mater., 42, 14 (2004).
17 E. P. George, D. P. Pope, C. L. Fu, and J. H. Schneibel, ISIJ International, 31, 1063 (1991).   DOI
18 D. B. Lee, S. H. Kim, and K. Niinobe, Mater. Sci. Eng., 290, 1 (2000).   DOI
19 M. Heilmaier, H. Saage, K. J. Mirpuri, J. Eckert, L. Schultz, and P. Singh, Mater. Sci. Eng., A, 329/331, 106 (2002).   DOI
20 L. Potez, G. Lapasset, and L. P. Kubin, Scri. Met. et Mater., 26, 841 (1992).   DOI
21 A. H. Cottrell, Philos. Mag., 44, 829 (1953).   DOI
22 R. K. Ham, and D. Jaffrey, Philos. Mag., 14, 247 (1967).
23 W. Charnock, Philos. Mag., 20, 427 (1969).   DOI
24 R. Sarmah and G. Ananthakrishna, Acta Mater., 91, 192 (2015).   DOI
25 Y. Nakayama, J. Japan Inst. Met., 65, 1 (2001).   DOI
26 Y. Nakayama and K. Naruke, J. Japan Inst. Light Met., 51, 346 (2001).   DOI
27 Y. Nakayama, K. Naruke, and M. Furuta, J. Japan Inst. Light Met., 52, 460 (2002).   DOI
28 M. Furuta, K. Naruke, Y. Yaginuma, K. Okada, T. Shinizu, and Y. Nakayama, J. Japan Inst. Light Met., 52, 586 (2002).   DOI
29 H. Mabuchi, A. Kito, and M. Nakamoto, Intermetallics, 4, 193 (1996).   DOI
30 J. M. Cowley, Phys. Rev., 77, 669 (1950).   DOI
31 J. P. Nic, S. Zhang, and D. E. Mikkola, Scripta Met., 24, 1099 (1990).   DOI
32 H. Mabuchi, K. Hirukawa, H. Tsuda, and Y. Nakayama, Scripta Met., 24, 505 (1990).   DOI
33 Y. Nakayama and H. Mabuchi, Intermetallics, 1, 41 (1993).   DOI
34 M. Kogachi, S. Minamigawa, and K. Nakahigashi, Scripta Met., 27, 407 (1992).   DOI
35 M. Kogachi and A. Kameyama, Scripta Met., 29, 1329 (1993).   DOI