Progressive Collapse Resisting Capacity of Braced Frames

가새골조의 연쇄붕괴 저항성능

  • 김진구 (성균관대학교 건축공학과) ;
  • 이영호 (성균관대학교 건축공학과) ;
  • 최현훈 (성균관대학교 건축공학과)
  • Published : 2008.10.30

Abstract

In this study the progressive collapse potential of braced frames were investigated using the nonlinear static and dynamic analyses. All of nine different brace types were considered along with a special moment-resisting frame for comparison. According to the pushdown analysis results, most braced frames designed per current design codes satisfied the design guidelines for progressive collapse initiated by loss of a first story mid-column; however most model structures showed brittle failure mode. This was caused by buckling of columns after compressive braces buckled. Among the braced frames considered, the inverted- V type braced frames showed superior ductile behavior during progressive collapse. The nonlinear dynamic analysis results showed that all the braced frame model structures remained in stable condition after sudden removal of a column, and their deflections were less than that of the moment-resisting frame.

본 논문에서는 비선형 정적해석 및 동적해석을 이용하여 가새골조의 연쇄붕괴 저항능력을 평가하였다. 모두 아홉 개의 서로 다른 가새 형태를 고려하였으며, 모멘트골조의 해석 결과와 비교하였다 비탄성 정적해석 결과에 따르면 현행 기준에 따라 설계된 저층 가새골조는 1층 중앙에 위치한 기둥이 제거될 경우 연쇄붕괴 저항성능 기준을 만족하는 것으로 나타났으나 대부분 취성적인 파괴모드를 나타내었다. 특히 압축가새가 좌굴한 후 인장가새가 인장력을 발휘하기 전에 취약한 층의 기둥이 좌굴하는 것으로 나타냈다. Inverted-V형 가새골조의 경우가 가장 연성도 면에서 우수한 것으로 나타났다. 동적 해석 결과에 따르면 모든 가새골조는 중앙에 위치한 기둥이 제거될 경우 붕괴되지 않으며, 동일한 규모의 모멘트 저항골조에 비해 진동이나 처짐량이 작은 것으로 나타났다.

Keywords

References

  1. 김진구, 김태완 (2007) 비선형동적해석방법을 이용한 철골모 멘트골조의 연쇄붕괴저항성능 평가, 대한건축학회 논문집, 23(5), pp.81-90
  2. AISC (2000) Load and resistance factor design specification for structural steel buildings, American Institute of Steel Construction, Chicago
  3. AISC (2002) Seismic Provisions for Structural Steel Buildings-Including Supplement No.1, ANSI/AISC 341-05, American Institute of Steel Construction, Chicago
  4. ASCE7-05 (2005) Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, New York
  5. Corley, W.G., Mlakar Sr., P.F., Sozen, M.A., Thornton, C.H. (1998) The Oklahoma City Bombing: Summary and Recommendations for Multihazard Mitigation, Journal of Performance of Constructed Facilities, 12(3), pp.100-112 https://doi.org/10.1061/(ASCE)0887-3828(1998)12:3(100)
  6. FEMA (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA-356, Federal Emergency Management Agency, Washington, D.C.
  7. GSA (2003) Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects, The U.S. General Services Administration
  8. John E. Crawford. (2002) Retrofit Methods to Mitigate Progressive Collapse, Report on the July 2002 National Workshop and Recommendations for Future Effort, The Multihazard Mitigation Council of the National Institute of Building Sciences
  9. MIDAS Genw. (2006) General Structure Design System for Windows
  10. Powell, G. (2005) Progressive Collapse: Case study Using Nonlinear Analysis, Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium, New York
  11. SAP2000 (2004) Structural Analysis Program, Computers and Structures, Berkeley
  12. Suzuki, I., Wada, A., Ohi, K., Sakumoto, Y., Fusimi, M., Kamura, H. (2003) Study on High-rise Steel Building Structure That Excels in Redundancy, Part II Evaluation of Redundancy Considering Heat Induced by Fire and Loss of Vertical Load Resistant Members., Proc. CIB-CTBUH International Conf. on Tall Buildings, pp.251-259
  13. Unified Facilities Criteria(UFC)-DoD (2005) Design of Buildings to Resist Progressive Collapse, Department of Defense