• Title/Summary/Keyword: dynamic clustering

Search Result 274, Processing Time 0.024 seconds

무선 센서네트워크의 에너지 효율적 집단화에 관한 연구 (A Study of Energy Efficient Clustering in Wireless Sensor Networks)

  • 이상학;정태충
    • 정보처리학회논문지C
    • /
    • 제11C권7호
    • /
    • pp.923-930
    • /
    • 2004
  • 무선 센서네트워크는 광범위하게 설치되어 있는 유무선 네트워크 인프라에 다양한 센서 디바이스를 결합하여 감지된 환경데이터를 응용 서비스와 연결하여 상황인지를 가능케 하는 유비쿼터스 컴퓨팅의 핵심기술이다. 하지만 자원이 제한된 노드를 이용해서 역동적인 애드 혹 네트워크를 유지하며 네트워크의 생존시간을 최대화하기 위해서는 네트워크 계층에서 효율적인 에너지 사용 방법을 필요로 한다. 집단화(Clustering)를 통한 데이터의 병합과 전송은 센서 네트워크의 구조와 데이터 특성에 비추어 에너지 효율적인 방법이다. 본 논문에서는 싱크로부터의 거리 정보를 이용해 분산된 방법으로 집단을 구성하는 새로운 방법을 제안하였다. 제안한 방법은 집단 구성에 따르는 추가적인 비용을 최소화하면서 전체 네트워크 노드간의 에너지 소모를 균등하게 유지할 수 있었다. 시뮬레이션을 통해 기존의 센서네트워크를 위해 제안된 확률적 집단 구성과 비교해 에너지 사용에 보다 효율적이었으며 이를 통해 네트워크의 생존시간을 늘릴 수 있었다.

시계열데이터의 모델기반 클러스터 결정 (Determining on Model-based Clusters of Time Series Data)

  • 전진호;이계성
    • 한국콘텐츠학회논문지
    • /
    • 제7권6호
    • /
    • pp.22-30
    • /
    • 2007
  • 대부분의 실세계의 시스템들, 즉 경제, 주식시장, 의료분야 등의 많은 시스템들은 동적이며 복잡한 현상을 갖는다. 이러한 특징들의 시스템을 이해하는 전형적인 방법은 시스템행위에 대한 모델을 세우고 분석하는 것이다. 본 연구에서는 실세계의 동적 시스템에서 발생되는 시계열데이터들에 대하여 최적의 클러스터를 형성하기 위한 방법을 연구한다. 먼저 클러스터 수를 결정하는 기준으로 베이지안정보기준(BIC : Bayesian Information Criterion)근사법의 활용도를 검증하고 데이터 크기와 베이지안정보기준값의 상관관계를 파악함으로 탐색 효율을 높이는 방안을 제안하며 클러스터링 과정으로 모델기반과 유사기반의 방법론을 비교 확인하여 본다. 실제의 시계열데이터(주가)에 대해 실험을 시행하였고 베이지안정보기준 근사 측도는 데이터의 크기에 따라 파티션의 사이즈를 정확히 추정하는 것을 확인하였으며 또한 유사기반의 방식보다 모델기반의 방법론이 클러스터링에서 더 나은 결과를 갖는 것을 확인하였다.

Clustering Ad hoc Network Scheme and Classifications Based on Context-aware

  • Mun, Chang-Min;Lee, Kang-Whan
    • Journal of information and communication convergence engineering
    • /
    • 제7권4호
    • /
    • pp.475-479
    • /
    • 2009
  • In ad hoc network, the scarce energy management of the mobile devices has become a critical issue in order to extend the network lifetime. Current research activity for the Minimum Energy Multicast (MEM) problem has been focused on devising efficient centralized greedy algorithms for static ad hoc networks. In this paper, we consider mobile ad hoc networks(MANETs) that could provide the reliable monitoring and control of a variety of environments for remote place. Mobility of MANET would require the topology change frequently compared with a static network. To improve the routing protocol in MANET, energy efficient routing protocol would be required as well as considering the mobility would be needed. In this paper, we propose a new method, the CACH(Context-aware Clustering Hierarchy) algorithm, a hybrid and clustering-based protocol that could analyze the link cost from a source node to a destination node. The proposed analysis could help in defining the optimum depth of hierarchy architecture CACH utilize. The proposed CACH could use localized condition to enable adaptation and robustness for dynamic network topology protocol and this provide that our hierarchy to be resilient. As a result, our simulation results would show that CACH could find energy efficient depth of hierarchy of a cluster.

3D Radar Objects Tracking and Reflectivity Profiling

  • Kim, Yong Hyun;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권4호
    • /
    • pp.263-269
    • /
    • 2012
  • The ability to characterize feature objects from radar readings is often limited by simply looking at their still frame reflectivity, differential reflectivity and differential phase data. In many cases, time-series study of these objects' reflectivity profile is required to properly characterize features objects of interest. This paper introduces a novel technique to automatically track multiple 3D radar structures in C,S-band in real-time using Doppler radar and profile their characteristic reflectivity distribution in time series. The extraction of reflectivity profile from different radar cluster structures is done in three stages: 1. static frame (zone-linkage) clustering, 2. dynamic frame (evolution-linkage) clustering and 3. characterization of clusters through time series profile of reflectivity distribution. The two clustering schemes proposed here are applied on composite multi-layers CAPPI (Constant Altitude Plan Position Indicator) radar data which covers altitude range of 0.25 to 10 km and an area spanning over hundreds of thousands $km^2$. Discrete numerical simulations show the validity of the proposed technique and that fast and accurate profiling of time series reflectivity distribution for deformable 3D radar structures is achievable.

A hybrid algorithm for classifying rock joints based on improved artificial bee colony and fuzzy C-means clustering algorithm

  • Ji, Duofa;Lei, Weidong;Chen, Wenqin
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.353-364
    • /
    • 2022
  • This study presents a hybrid algorithm for classifying the rock joints, where the improved artificial bee colony (IABC) and the fuzzy C-means (FCM) clustering algorithms are incorporated to take advantage of the artificial bee colony (ABC) algorithm by tuning the FCM clustering algorithm to obtain the more reasonable and stable result. A coefficient is proposed to reduce the amount of blind random searches and speed up convergence, thus achieving the goals of optimizing and improving the ABC algorithm. The results from the IABC algorithm are used as initial parameters in FCM to avoid falling to the local optimum in the local search, thus obtaining stable classifying results. Two validity indices are adopted to verify the rationality and practicability of the IABC-FCM algorithm in classifying the rock joints, and the optimal amount of joint sets is obtained based on the two validity indices. Two illustrative examples, i.e., the simulated rock joints data and the field-survey rock joints data, are used in the verification to check the feasibility and practicability in rock engineering for the proposed algorithm. The results show that the IABC-FCM algorithm could be applicable in classifying the rock joint sets.

의사 결정 구조에 의한 오존 농도예측 (Forecasting Ozone Concentration with Decision Support System)

  • 김재용;김태헌;김성신;이종범;김신도;김용국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.368-368
    • /
    • 2000
  • In this paper, we present forecasting ozone concentration with decision support system. Since the mechanism of ozone concentration is highly complex, nonlinear, and nonstationary, modeling of ozone prediction system has many problems and results of prediction are not good performance so far. Forecasting ozone concentration with decision support system is acquired to information from human knowledge and experiment data. Fuzzy clustering method uses the acquisition and dynamic polynomial neural network gives us a good performance for ozone prediction with ability of superior data approximation and self-organization.

  • PDF

저항점용접 1차 공정변수를 이용한 지능형 용접품질 판단 시스템 (Intelligent quality estimation system using primary circuit variables of RSW)

  • 조용준;이세헌;신현일;배경민;권태용
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1999년도 특별강연 및 추계학술발표대회 개요집
    • /
    • pp.142-145
    • /
    • 1999
  • The dynamic resistance monitoring is one of the important issues in that in-process and real time quality assurance of resistance spot weld is needed to increase the product reliability. Secondary dynamic resistance patterns, as a real manner, are hard to adapt those factors in real time and in-plant system. In the present study, a new dynamic resistance detecting method is presented as a practical manner of weld quality assurance at the primary circuit. By the correlation analysis, it is found that the primary dynamic resistance patterns are basically similar to those of the secondary. Various dynamic resistance indices are characterized with the primary curve. And quality of the weld, like the tensile shear strength, is estimated using adaptive neuro-fuzzy estimation system which is consisted of the Sugeno fuzzy algorithm. Through the fuzzy clustering and parameter optimization, real time weld quality assurance system with less efforts is proposed.

  • PDF

무선 인터넷 프록시 서버 환경에서 자체 학습 기반의 적응적 클러스터렁 (A Self-Learning based Adaptive Clustering in a Wireless Internet Proxy Server Environment)

  • 곽후근;정규식
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권7호
    • /
    • pp.399-412
    • /
    • 2006
  • 서버들이 서로 다른 데이타를 저장하고 있는 협동성 캐슁을 사용하는 클러스터링 기반의 무선 인터넷 프록시 서버에서는 Hot-Spot 혹은 임의의 입력 요청 패턴이 발생하면 일부 서버만 과부하가 되어 전체적인 성능이 떨어지는 문제점을 가진다. 본 논문에서는 기존 클러스터링이 가지는 Hot-Spot 및 임의의 입력 요청 패턴을 반영하지 못하는 문제점을 해결하기 위해 새로운 자체 학습 기반의 적응적 클러스터링 기법을 제안한다. 제안된 방법에서는 요청을 처리하는 일부 서버들이 과부하가 되면 해당 요청을 다른 서버들로 재 분산한다. 이러한 재 분산은 자체 학습 알고리즘에 의해 수행되고, 다양한 입력 패턴 혹은 서로 다른 성능의 서버들을 가지는 클러스터에도 적용이 가능하다 제안된 방법들은 16대의 컴퓨터와 부하 분산기를 가지고 클러스터링 환경에서 실험되었고, 실험 결과는 기존 방법들에 비해 54.62% 성능이 향상되었음을 보여준다.

분산 모바일 서비스의 다중 스트리밍을 위한 가변 클러스터링 관리 (Variable Clustering Management for Multiple Streaming of Distributed Mobile Service)

  • 정택원;이종득
    • 한국지능시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.485-492
    • /
    • 2009
  • 모바일 서비스 환경에서 시간 동기화에 의해 생성된 패턴들은 데이터 스트리밍으로 인하여 인스턴스 값들이 다르게 스트리밍 된다. 본 논문에서는 유연한 클러스터링을 지원하기 위해 가변클러스터링 관리 기법을 제안하며, 이 구조는 다중 데이터 스트리밍을 동적으로 관리하도록 지원한다. 제안되는 기법은 일반적인 스트리밍기법과 달리 데이터 스트림 환경에서 동기화를 효율적으로 지원하는 기능을 수행하며, 구조적 표현단계와 적합성 표현단계를 거쳐 클러스터링 스트리밍이 관리된다. 구조적 표현 단계는 레벨정합과 누적정합을 수행하여 스트림 구조가 표현되며, 동적 세그먼트와 정적세그먼트 관리를 통해서 클러스터링 관리가 가변적으로 수행되도록 하였다. 제안된 기법의 성능 평가를 위해서 k-means 기법, C/S 서버기법 그리고 CDN 기법과 시뮬레이션평가를 수행하였으며 그 결과 제안된 기법의 성능이 효율적임을 알 수 있었다.

An Efficient Optimization Technique for Node Clustering in VANETs Using Gray Wolf Optimization

  • Khan, Muhammad Fahad;Aadil, Farhan;Maqsood, Muazzam;Khan, Salabat;Bukhari, Bilal Haider
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권9호
    • /
    • pp.4228-4247
    • /
    • 2018
  • Many methods have been developed for the vehicles to create clusters in vehicular ad hoc networks (VANETs). Usually, nodes are vehicles in the VANETs, and they are dynamic in nature. Clusters of vehicles are made for making the communication between the network nodes. Cluster Heads (CHs) are selected in each cluster for managing the whole cluster. This CH maintains the communication in the same cluster and with outside the other cluster. The lifetime of the cluster should be longer for increasing the performance of the network. Meanwhile, lesser the CH's in the network also lead to efficient communication in the VANETs. In this paper, a novel algorithm for clustering which is based on the social behavior of Gray Wolf Optimization (GWO) for VANET named as Intelligent Clustering using Gray Wolf Optimization (ICGWO) is proposed. This clustering based algorithm provides the optimized solution for smooth and robust communication in the VANETs. The key parameters of proposed algorithm are grid size, load balance factor (LBF), the speed of the nodes, directions and transmission range. The ICGWO is compared with the well-known meta-heuristics, Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO) for clustering in VANETs. Experiments are performed by varying the key parameters of the ICGWO, for measuring the effectiveness of the proposed algorithm. These parameters include grid sizes, transmission ranges, and a number of nodes. The effectiveness of the proposed algorithm is evaluated in terms of optimization of number of cluster with respect to transmission range, grid size and number of nodes. ICGWO selects the 10% of the nodes as CHs where as CLPSO and MOPSO selects the 13% and 14% respectively.