• Title/Summary/Keyword: dynamic capability

Search Result 794, Processing Time 0.024 seconds

Performance Evaluation of FDS for Predicting the Unsteady Fire Characteristics in a Semi-Closed ISO 9705 Room (반밀폐된 ISO 9705 화재실에서 비정상 화재특성 예측을 위한 FDS의 성능평가)

  • Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 2012
  • The objective of this study is to evaluate the prediction accuracy of FDS(Fire Dynamic Simulator) for the thermal and chemical characteristics of under-ventilated fire with unsteady fire growth in a semi-closed compartment. To this end, a standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time (until maximum 2.0 MW based on ideal heat release rate) using a spray nozzle located at the center of enclosure. To verify the capability of FDS, the predicted results were compared with a previous experimental data under the identical fire conditions. It was observed that with an appropriate grid system, the numerically predicted temperature and heat flux inside the compartment showed reasonable agreement with the experimental data. On the other hand, there were considerable limitations to predict accurately the unsteady behaviors of CO and $CO_2$ concentration under the condition of continuous fire growth. These results leaded to a discrepancy between the present evaluation of FDS and the previous evaluation conducted for steady-state under-ventilated fires. It was important to note that the prediction of transient CO production characteristics using FDS was approached carefully for the under-ventilated fire in a semi-closed compartment.

Dynamic Multi-Proxy Signature Schemes based on Secret Sharing and Diffie-bellman Problem (비밀분산법과 Diffie-Hellman 문제에 기반한 동적 멀티 대리서명 프로토콜)

  • 박소영;이상호
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.8
    • /
    • pp.465-472
    • /
    • 2004
  • Proxy signatures is a signature scheme that an original signer delegates one's signature capability to a proxy signer, and then the proxy signer creates a signature on behalf of the original signer. Delegation of authority is a common practice in the real world, in particular, it happens naturally in hierarchical groups such as company, bank and army, etc. In this paper, we propose a new dynamic multi-proxy signature scheme allowing repetitive delegations in a hierarchical group. We adopt multi-proxy signatures to enhance the security of proxy signature. In multi-proxy signatures, plural proxy signers can generate a valid proxy signature collectively on behalf of one original signer. In our scheme, the proxy group is not fixed but constructed dynamically according to some situations. Delegations are processed from higher level to lower level in the hierarchy using delegation tickets. When the original signer wants to delegate one's signature authority, the original signer generates a delegation ticket based on secret sharing and Diffie-Hellman problems. The delegation ticket is shared among proxy signers and then all the proxy signers can generate a valid proxy signature collectively by reconstructing the original signer's delegation ticket. If a certain proxy signer can not attend the proxy signature generating protocol, the proxy signer can also delegate repetitively his partial signature authority to the lower level participants, and then the proxies are constructed dynamically.

Memory Efficient Query Processing over Dynamic XML Fragment Stream (동적 XML 조각 스트림에 대한 메모리 효율적 질의 처리)

  • Lee, Sang-Wook;Kim, Jin;Kang, Hyun-Chul
    • The KIPS Transactions:PartD
    • /
    • v.15D no.1
    • /
    • pp.1-14
    • /
    • 2008
  • This paper is on query processing in the mobile devices where memory capacity is limited. In case that a query against a large volume of XML data is processed in such a mobile device, techniques of fragmenting the XML data into chunks and of streaming and processing them are required. Such techniques make it possible to process queries without materializing the XML data in its entirety. The previous schemes such as XFrag[4], XFPro[5], XFLab[6] are not scalable with respect to the increase of the size of the XML data because they lack proper memory management capability. After some information on XML fragments necessary for query processing is stored, it is not deleted even after it becomes of no use. As such, when the XML fragments are dynamically generated and infinitely streamed, there could be no guarantee of normal completion of query processing. In this paper, we address scalability of query processing over dynamic XML fragment stream, proposing techniques of deleting information on XML fragments accumulated during query processing in order to extend the previous schemes. The performance experiments through implementation showed that our extended schemes considerably outperformed the previous ones in memory efficiency and scalability with respect to the size of the XML data.

The Forecasting a Maximum Barbell Weight of Snatch Technique in Weightlifting (역도 인상동작 성공 시 최대 바벨무게 예측)

  • Hah, Chong-Ku;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.143-152
    • /
    • 2005
  • The purpose of this study was to predict the failure or success of the Snatch-lifting trial as a consequence of the stand-up phase simulated in Kane's equation of motion that was effective for the dynamic analysis of multi-segment. This experiment was a case study in which one male athlete (age: 23yrs, height: 154.4cm, weight: 64.5kg) from K University was selected The system of a simulation included a multi-segment system that had one degree of freedom and one generalized coordinate for the shank segment angle. The reference frame was fixed by the Nonlinear Trans formation (NLT) method in order to set up a fixed Cartesian coordinate system in space. A weightlifter lifted a 90kg-barbell that was 75% of subject's maximum lifting capability (120kg). For this study, six cameras (Qualisys Proreflex MCU240s) and two force-plates (Kistler 9286AAs) were used for collecting data. The motion tracks of 11 land markers were attached on the major joints of the body and barbell. The sampling rates of cameras and force-plates were set up 100Hz and 1000Hz, respectively. Data were processed via the Qualisys Track manager (QTM) software. Landmark positions and force-plate amplitudes were simultaneously integrated by Qualisys system The coordinate data were filtered using a fourth-order Butterworth low pass filtering with an estimated optimum cut-off frequency of 9Hz calculated with Andrew & Yu's formula. The input data of the model were derived from experimental data processed in Matlab6.5 and the solution of a model made in Kane's method was solved in Matematica5.0. The conclusions were as follows; 1. The torque motor of the shank with 246Nm from this experiment could lift a maximum barbell weight (158.98kg) which was about 246 times as much as subject's body weight (64.5kg). 2. The torque motor with 166.5 Nm, simulated by angular displacement of the shank matched to the experimental result, could lift a maximum barbell weight (90kg) which was about 1.4 times as much as subject's body weight (64.5kg). 3. Comparing subject's maximum barbell weight (120kg) with a modeling maximum barbell weight (155.51kg) and with an experimental maximum barbell weight (90kg), the differences between these were about +35.7kg and -30kg. These results strongly suggest that if the maximum barbell weight is decided, coaches will be able to provide further knowledge and information to weightlifters for the performance improvement and then prevent injuries from training of weightlifters. It hopes to apply Kane's method to other sports skill as well as weightlifting to simulate its motion in the future study.

Contact forces generated by fallen debris

  • Sun, Jing;Lam, Nelson;Zhang, Lihai;Gad, Emad;Ruan, Dong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.589-603
    • /
    • 2014
  • Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.

Time series clustering for AMI data in household smart grid (스마트그리드 환경하의 가정용 AMI 자료를 위한 시계열 군집분석 연구)

  • Lee, Jin-Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.791-804
    • /
    • 2020
  • Residential electricity consumption can be predicted more accurately by utilizing the realtime household electricity consumption reference that can be collected by the AMI as the ICT developed under the smart grid circumstance. This paper studied the model that predicts residential power load using the ARIMA, TBATS, NNAR model based on the data of hour unit amount of household electricity consumption, and unlike forecasting the consumption of the whole households at once, it computed the anticipated amount of the electricity consumption by aggregating the predictive value of each established model of cluster that was collected by the households which show the similiar load profile. Especially, as the typical time series data, the electricity consumption data chose the clustering analysis method that is appropriate to the time series data. Therefore, Dynamic Time Warping and Periodogram based method is used in this paper. By the result, forecasting the residential elecrtricity consumption by clustering the similiar household showed better performance than forecasting at once and in summertime, NNAR model performed best, and in wintertime, it was TBATS model. Lastly, clustering method showed most improvements in forecasting capability when the DTW method that was manifested the difference between the patterns of each cluster was used.

Ground Vibration Reduction Technology Using High Damping Polymer Concrete (고 감쇠 폴리머 콘크리트를 활용한 지반진동 저감기술에 대한 연구)

  • Kim, Jeong-Jin;Seok, Won-Gyun;We, Joon-Woo;Ahn, So-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.154-160
    • /
    • 2021
  • Recently, there have been increasing construction works carried out in urban centers, which are inducing frequent artificial vibration in the vicinity of existing structures due to such construction works. moreover, in case of industrial estates, vibration is induced due to operation of machines in the surrounding areas, thereby causing problems. meanwhile, in case of ordinary concrete that compose structure has low level of damping capability for vibration. accordingly, there are difficulties in blocking a wide range of vibrations delivered to the structures from outside including not only vibrations generated in the structures themselves but also ground vibration. recently, numerous studies are being carried out actively on high-damping system that markedly enhanced the damping performances of structures by utilizing polymer concrete in order to block the vibrations delivered to the structures through ground. therefore, this study compared the performances of polymer concrete with those of ordinary concrete, polyurethane pad and foamed rubber pad in order to review its performances in reducing ground vibration. for this purpose, review of FRF and vibration acceleration as dynamic characteristics was made. after comparative verification on the dynamic characteristics is made when polymer concrete and other aforementioned materials are applied to underground structures, the possibility of application of polymer concrete to structures is reviewed.

Evaluation of Future Hydrologic Risk of Drought in Nakdong River Basin Using Bayesian Classification-Based Composite Drought Index (베이지안 분류 기반 통합가뭄지수를 활용한 낙동강 유역의 미래 가뭄에 대한 수문학적 위험도 분석)

  • Kim, Hyeok;Kim, Ji Eun;Kim, Jiyoung;Yoo, Jiyoung;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.309-319
    • /
    • 2023
  • Recently, the frequency and intensity of meteorological disasters have increased due to climate change. In South Korea, there are regional differences in vulnerability and response capability to cope with climate change because of regional climate characteristics. In particular, drought results from various factors and is linked to extensive meteorological, hydrological, and agricultural impacts. Therefore, in order to effectively cope with drought, it is necessary to use a composite drought index that can take into account various factors, and to evaluate future droughts comprehensively considering climate change. This study evaluated hydrologic risk(${\bar{R}}$) of future drought in the Nakdong River basin based on the Dynamic Naive Bayesian Classification (DNBC)-based composite drought index, which was calculated by applying Standardized Precipitation Index (SPI), Streamflow Drought Index (SDI), Evaporate Stress Index (ESI) and Water Supply Capacity Index (WSCI) to the DNBC. The indices used in the DNBC were calculated using observation data and climate scenario data. A bivariate frequency analysis was performed for the severity and duration of the composite drought. Then using the estimated bivariate return periods, hydrologic risks of drought were calculated for observation and future periods. The overall results indicated that there were the highest risks during the future period (2021-2040) (${\bar{R}}$=0.572), and Miryang River (#2021) had the highest risk (${\bar{R}}$=0.940) on average. The hydrologic risk of the Nakdong River basin will increase highly in the near future (2021-2040). During the far future (2041-2099), the hydrologic risk decreased in the northern basins, and increased in the southern basins.

Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel

  • Suryanarayana, Ch.;Satyanarayana, B.;Ramji, K.;Saiju, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.24-33
    • /
    • 2010
  • Design of a Pump Jet Propulsor (PJP) was undertaken for an underwater body with axisymmetric configuration using axial/low compressor design techniques supported by Computational Fluid Dynamics (CFD) analysis for performance prediction. Experimental evaluation of the PJP was earned out through experiments in a Wind Tunnel Facility (WTF) using momentum defect principle for propulsive performance prior to proceeding with extensive experimental evaluation in towing tank and cavitation tunnel. Experiments were particularly conducted with respect to Self Propulsion Point (SPP), residual torque and thrust characteristics over a range of vehicle advance ratio in order to ascertain whether sufficient thrust is developed at the design condition with least possible imbalance torque left out due to residual swirl in the slip stream. Pumpjet and body models were developed for the propulsion tests using Aluminum alloy forged material. Tests were conducted from 0 m/s to 30 m/s at four rotational speeds of the PJP. SPP was determined confirming the thrust development capability of PJP. Estimation of residual torque was carried out at SPP corresponding to speeds of 15, 20 and 25 m/s to examine the effectiveness of the stator. Estimation of thrust and residual torque was also carried out at wind speeds 0 and 6 m/s for PJP RPMs corresponding to self propulsion tests to study the propulsion characteristics during the launch of the vehicle m water where advance ratios are close to Zero. These results are essential to assess the thrust performance at very low advance ratios to accelerate the body and to control the body during initial stages. This technique has turned out to be very useful and economical method for quick assessment of overall performance of the propulsor and generation of exhaustive fluid dynamic data to validate CFD techniques employed.

Reliability and Validity of the Postural Balance Application Program Using the Movement Accelerometer Principles in Healthy Young Adults

  • Park, Seong-Doo;Kim, Ji-Seon;Kim, Suhn-Yeop
    • Physical Therapy Korea
    • /
    • v.20 no.2
    • /
    • pp.52-59
    • /
    • 2013
  • The purpose of this study was to determine the reliability and validity of the postural balance program which uses the movement accelerating field principles of posture balance training and evaluation equipment and smartphone movement accelerometer program (SMAP) in healthy young adults. A total of 34 people were appointed as the subject among the healthy young adults. By using Biodex stability system (BSS) and SMAP on the subject, the posture balance capability was evaluated. For the test-retest reliability, SMAP showed the intra-class correlation (ICC: .62~.91) and standard error measurement (SEM: .01~.08). BSS showed the moderate to high reliability of ICC (.88~.93) and SEM (.02~.20). In the reliability of inter-rater, ICC (.59~.73) as to SMAP, showed the reliability of moderate in eyes open stability all (EOSA), eyes open stability anterior posterior (EOSAP), eyes open stability medial lateral (EOSML) and eyes open dinamic all (EODA), eyes open danamic anterior posterior (EODAP), and eyes open danamic medial lateral (EODML). However, ICC showed reliability which was as low as .59 less than in other movements. In addition, BSS showed the reliability of high as ICC (.70~.75). It showed reliability which was as low as ICC (.59 less than) in other movements. In correlation to the balance by attitudes between SMAP and BSS, EOSML (r=.62), EODA (r=.75), EODML (r=.72), ECDAP (r=.64), and ECDML (r=.69) shown differ significantly (p<.05). However, the correlation noted in other movements did not differ significantly. Therefore, SMAP and BSS can be usefully used in the posture balance assessment of the static and dynamic condition with eyes opened and closed.