DOI QR코드

DOI QR Code

Evaluation of Future Hydrologic Risk of Drought in Nakdong River Basin Using Bayesian Classification-Based Composite Drought Index

베이지안 분류 기반 통합가뭄지수를 활용한 낙동강 유역의 미래 가뭄에 대한 수문학적 위험도 분석

  • 김혁 (한양대학교 대학원 스마트시티공학과) ;
  • 김지은 (한양대학교(ERICA) 공학기술연구소) ;
  • 김지영 (한양대학교 대학원 스마트시티공학과) ;
  • 유지영 (한양대학교(ERICA) 공학기술연구소) ;
  • 김태웅 (한양대학교(ERICA) 건설환경공학과)
  • Received : 2022.12.21
  • Accepted : 2023.03.27
  • Published : 2023.06.01

Abstract

Recently, the frequency and intensity of meteorological disasters have increased due to climate change. In South Korea, there are regional differences in vulnerability and response capability to cope with climate change because of regional climate characteristics. In particular, drought results from various factors and is linked to extensive meteorological, hydrological, and agricultural impacts. Therefore, in order to effectively cope with drought, it is necessary to use a composite drought index that can take into account various factors, and to evaluate future droughts comprehensively considering climate change. This study evaluated hydrologic risk(${\bar{R}}$) of future drought in the Nakdong River basin based on the Dynamic Naive Bayesian Classification (DNBC)-based composite drought index, which was calculated by applying Standardized Precipitation Index (SPI), Streamflow Drought Index (SDI), Evaporate Stress Index (ESI) and Water Supply Capacity Index (WSCI) to the DNBC. The indices used in the DNBC were calculated using observation data and climate scenario data. A bivariate frequency analysis was performed for the severity and duration of the composite drought. Then using the estimated bivariate return periods, hydrologic risks of drought were calculated for observation and future periods. The overall results indicated that there were the highest risks during the future period (2021-2040) (${\bar{R}}$=0.572), and Miryang River (#2021) had the highest risk (${\bar{R}}$=0.940) on average. The hydrologic risk of the Nakdong River basin will increase highly in the near future (2021-2040). During the far future (2041-2099), the hydrologic risk decreased in the northern basins, and increased in the southern basins.

최근 기후변화로 인해 기상재해의 발생빈도와 강도가 증가하고 있다. 우리나라는 지역별 기후 특성의 편차로 인해 기후변화에 따른 취약성 및 대응능력이 지역별로 차이가 크다. 특히 가뭄은 다양한 요인에 의해 발생하고, 기상학적, 수문학적, 농업적 영향 범위가 광범위하다. 따라서 가뭄에 효과적으로 대응하기 위해서는 다양한 요인을 고려할 수 있는 통합가뭄지수를 활용할 필요가 있으며, 기후변화를 고려한 미래 가뭄을 종합적으로 평가해야 한다. 본 연구에서는 베이지안 분류(DNBC) 기반의 통합가뭄지수를 활용하여 낙동강 유역의 미래 가뭄에 대한 수문학적 위험도(${\bar{R}}$)를 평가하였다. 우선, 관측자료와 기후변화 시나리오 자료를 이용하여 부문별 가뭄지수(SPI, SDI, ESI, WSCI)를 DNBC에 적용하여 통합가뭄지수를 산정하였다. 산정된 통합가뭄지수의 심도와 지속기간을 대상으로 이변량 가뭄빈도분석을 실시하고, 이변량 재현기간을 활용하여 수문학적 위험도를 산정하였다. 그 결과, S2(2021-2040) 기간에서 위험도가 가장 높게 나타났으며(${\bar{R}}$=0.572), 평균적으로 위험도가 가장 높은 지역은 밀양강(#2021)이었다(${\bar{R}}$=0.94). 단기 미래(2021-2040) 기간 동안 낙동강 유역의 수문학적 위험도는 전반적으로 큰 폭으로 상승하였으며, 중·장기 미래(2041-2070, 2071-2099) 기간 동안 낙동강 유역 북부의 위험도는 감소하고 남부의 위험도는 상승하였다.

Keywords

Acknowledgement

본 논문은 한국환경산업기술원의 가뭄대응물관리혁신기술개발사업(2022003610001)의 지원을 받아 수행된 연구성과입니다.

References

  1. Ahn, J. H., Yoo, C. S. and Yoon, Y. N. (2001). "An analysis of hydrologic changes in Daechung Dam basin using GCM simulation results due to global warming." Journal of Korea Water Resources Association, Vol. 34, No. 4, pp. 335-345 (in Korean).
  2. Anderson, M. C., Zolin, C. A., Sentelhas, P. C., Hain, C. R., Semmens, K., Yilmaz, M. T., Gao, F., Otkin, J. A. and Tetrault, R. (2016). "The evaporative stress index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts." Remote Sensing of Environment, Vol. 174, pp. 82-99. https://doi.org/10.1016/j.rse.2015.11.034
  3. Chen, S., Muhammad, W., Lee, J. H. and Kim, T. W. (2018). "Assessment of probabilistic multi-index drought using a dynamic naive Bayesian classifier." Water Resources Management, Vol. 32, pp. 4359-4374. https://doi.org/10.1007/s11269-018-2062-x
  4. Guttman, N. B. (1999). "Accepting the standardized precipitation index: A calculation algorithm." Journal of the American Water Resources Association, Vol. 35, No. 2, pp. 311-322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
  5. Hao, Z. and Singh, V. P. (2015). "Drought characterization from a multivariate perspective: A review." Journal of Hydrology, Vol. 527, pp. 668-678. https://doi.org/10.1016/j.jhydrol.2015.05.031
  6. Kim, H., Park, D. H., Ahn, J. H. and Kim, T. W. (2022). "Development of a multiple-drought index for comprehensive drought risk assessment using a dynamic naive Bayesian classifier." Water, Vol. 14, No. 9, pp. 1516.
  7. Kim, J. E., Lee, B. S., Yoo, J. Y., Kwon, H. H. and Kim, T. W. (2021). "Low-flow frequency analysis and drought outlook in water districts under climate change scenarios : A case study of Gimcheon-si, Korea." Journal of Wetlands Research, Vol. 23, No. 1, pp. 14-26 (in Korean). https://doi.org/10.17663/JWR.2021.23.1.14
  8. Kim, J. G., Kim, J. Y., Ban, W. S. and Kwon, H. H. (2019). "A development of bivariate regional drought frequency analysis model using copula function." Journal of Korea Water Resources Association, Vol. 52, No. 12, pp. 985-999 (in Korean).
  9. Korea Meteorological Administration (KMA). (2020). Korean climate change assessment report 2020 (in Korean).
  10. Korea Meteorological Administration (KMA). (2022). Open MET data portal, Available at: https://datakma.go.kr/ (Accessed: December 1, 2022).
  11. Korea Research Institute for Human Settlements (KRIHS). (2011). Research for water management policy preparing with climate change - Focus on drought vulnerability and policy plan of territory (in Korean).
  12. Kwak, J. W., Kim, S. J., Kim, D. H. and Kim, H. S. (2016). "Hydrological drought analysis based on copula theory." River Basin Management, D. Bucur, ed., IntechOpen, London, United Kingdom, pp. 81-95.
  13. Lee, D. R., Moon, J. W., Lee, D. H. and Ahn, J. H. (2006). "Development of water supply capacity index to monitor droughts in a reservoir." Journal of Korea Water Resources Association, Vol. 39, No. 3, pp. 199-214 (in Korean). https://doi.org/10.3741/JKWRA.2006.39.3.199
  14. Martinez, M. and Sucar, L. E. (2008). "Learning dynamic naive Bayesian classifiers." Proc. of 21st Int. FLAIRS Conf. 2008, pp. 655-659.
  15. Ministry of Construction & Transportation (MOCT). (1995). Survey report of drought history (in Korean).
  16. Ministry of Construction & Transportation (MOCT). (2001). Survey report of drought history (in Korean).
  17. Ministry of Environment (MOE) and K-water. (2020). Report of sharing groundwater project for drought preparation in Eumseong area (in Korean).
  18. Ministry of Land, Infrastructure and Transport (MOLIT). (2015). Survey report of drought history (in Korean).
  19. Mo, K. C. (2008). "Model-based drought indicies over the United States." Journal of Hydrometeorology, Vol. 9, No. 6, pp. 1212-1230. https://doi.org/10.1175/2008JHM1002.1
  20. Nalbantis, I. and Tsakiris, G. (2009). "Assessment of hydrological drought revisited." Water Resources Management, Vol. 23, No. 5, pp. 881-897. https://doi.org/10.1007/s11269-008-9305-1
  21. Park, D. H., Chen, S. and Kim, T. W. (2020). "Probabilistic assessment of drought states using a dynamic naive Bayesian classifier." Terrestrial, Atmospheric and Oceanic Sciences, Vol. 31, No. 3, pp. 359-368. https://doi.org/10.3319/TAO.2019.10.08.01
  22. Park, J. Y., Kim, J. E., Lee, J. H. and Kim, T. W. (2019). "Assessment of hydrologic risk of extreme drought according to RCP climate change scenarios using bivariate frequency analysis." KSCE Journal of Civil and Environmental Engineering Research, Vol. 39, No. 5, pp. 561-568 (in Korean).
  23. Seo, J. H., Chi, H. W., Kim, H. J. and Kim, Y. J. (2022). "Hydrological drought risk assessment for climate change adaptation in South Korea." Journal of Korea Water Resources Association, Vol. 55, No. 6, pp. 421-435 (in Korean).
  24. Shiau, J. T. (2003). "Return period of bivariate distributed hydrologic events." Stochastic Environmental Research and Risk Assessment, Vol. 17, No. 1-2, pp. 42-57. https://doi.org/10.1007/s00477-003-0125-9
  25. Waseem, M., Ajmal, M. and Kim, T. W. (2015). "Development of a new composite drought index for multivariate drought assessment." Journal of Hydrology, Vol. 527, pp. 30-37. https://doi.org/10.1016/j.jhydrol.2015.04.044
  26. Wilhite, D. A., Hayes, M. J., Knutson, C. and Smith, K. H. (2007). "Planning for drought: moving from crisis to risk management." Journal of the American Water Resources Association, Vol. 36, No. 4, pp. 697-710.
  27. Yu, J. S., Yoo, J. Y., Lee, J. H. and Kim, T. W. (2016). "Estimation of drought risk through the bivariate drought frequency analysis using copula functions." Journal of Korea Water Resources Association, Vol. 49, No. 3, pp. 217-225 (in Korean). https://doi.org/10.3741/JKWRA.2016.49.3.217