• Title/Summary/Keyword: dyeing wastewater

Search Result 117, Processing Time 0.027 seconds

Biological Treatment of Dyeing Wastewater Using Jet Loop Reactor with Activated Carton Supports (활성탄 담체가 포함된 Jet-Loop Reactor를 이용한 종합염색폐수처리)

  • 조무환;박종탁;이길호;류원률
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.241-246
    • /
    • 2002
  • Today, many problems of dye-processing wastewaters were raised due to industry of dyeing and textiles. It is difficult to treat them perfectly because they contain many poorly degradable matters, such as surfactants, ethylene glycol, polyvinyl alcohol, and so on. To improve the performances of conventional physicochemical treatment and activated sludge process, new systems of combining jet-loop reactor (JLR) with physicochemical treatment were developed. Volumetric oxygen transfer coefficient ($k_{L}a$) of JLR was significantly larger than that of air-lift reactor. Also, for the effective treatment of dye-processing wastewater, JLR with active carbon supports (JLRAS) were investigated. Removal efficiency of BOD, $COD_{Mn}$, $COD_{Cr} and color were found as 99, 86, 84, 83%, respectively, when HRT was 8 hrs. And performance of JLRAS was rapidly restored after step change of $COD_{Mn}$ loading late. The optimal coagulant and dosage of second physicochemical treatment after JLRAS were polyferric sulfate and 130 mg/L, respectively, when removal efficiencies of $COD_{Mn} and color were 85 and 73%, respectively. In conclusion, this system enables the reduction of operation cost, and the effective removal of many organics.

Decolorization of Azo Dyeing Wastewater Using Underwater Dielectric Barrier Discharge Plasma (수중 유전체장벽방전 플라즈마를 이용한 아조 염색폐수 색도제거)

  • Jo, Jin Oh;Lee, Sang Baek;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.544-550
    • /
    • 2013
  • This work investigated the environmental application of an underwater dielectric barrier discharge plasma reactor consisting of a porous hydrophobic ceramic tube to the decolorization of an azo dyeing wastewater. The reactive species generated by the plasma are mostly short-lived, which also need to be transferred to the wastewater right after the formation. Moreover, the gas-liquid interfacial area should be as large as possible to increase the decolorization rate. The arrangement of the present wastewater treatment system capable of immediately dispersing the plasmatic gas as tiny bubbles makes it possible to effectively decolorize the dyeing wastewater alongside consuming less amount of electrical energy. The effect of discharge power, gas flow rate, dissolved anion and initial dye concentration on the decolorization was examined with dry air for the creation of plasma and amaranth as an azo dye. At a gas flow rate of $1.5Lmin^{-1}$, the good contact between the plasmatic gas and the wastewater was achieved, resulting in rapid decolorization. For an initial dye concentration of $40.2{\mu}molL^{-1}$ (volume : 0.8 L; discharge power : 3.37 W), it took about 25 min to attain a decolorization efficiency of above 99%. Besides, the decolorization rate increased with decreasing the initial dye concentration or increasing the discharge power. The presence of chlorine anion appeared to slightly enhance the decolorization rate, whereas the effect of dissolved nitrate anion was negligible.

Recirculating Integrated System for the Treatment of Authentic Integrated-textile-dyeing Wastewater from Dyeing Industrial Complex (염색산업단지 종합폐수처리용 재순환 통합시스템)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.837-845
    • /
    • 2017
  • A recirculating integrated system composed of a fluidized biofilter filled with waste-tire crumb media fixed with return sludge from wastewater treatment facility of D dyeing industrial center, and a UV/photocatalytic reactor packed with calcined $TiO_2$ coated-glass beads as photocatalyst-support, was constructed and was run to treat authentic textile-dyeing wastewater from D-dyeing industrial center, which was mixed with an alkaline polyester-weight-reducing wastewater and a wastewater from sizing process. As a result, its total removal efficiency(RE(tot)) of $COD_{cr}$ and colors were ca. 81% and 55%, respectively. The synergy effect of the recirculating integrated system to enhance total removal efficiency(RE(tot)) of $COD_{cr}$ and colors were evaluated at most ca. 7% and 3%, respectively. The fluidized biofilter and the UV/photocatalytic reactor were responsible for ca. 94% and 6% of the total $COD_{cr}$ removal efficiency, respectively, and were also responsible for ca. 86% and 14% of the total color-removal efficiency, respectively. Thus, the degree of the UV/photocatalytic reactor-unit process's contribution to RE(tot) of color, was about 2.4 times of that to RE(tot) of $COD_{cr}$. Therefore, the UV/photocatalytic reactor facilitated the more effective elimination of colors by breaking down the chemical bonds oriented from colors of dyes such as azo-bond, than $COD_{cr}$. In addition, the effect of the removal efficiency of each unit process(i.e., the fluidized biofilter or the UV/photocatalytic reactor) of the recirculating integrated system on RE(tot) of $COD_{cr}$ and colors, was analysed by establishing its model equation with an analytic correlation.

A Study on the Treatment of Wastewater from the Weight-Reduction Process of Polyester (폴리에스테르 감량가공(減量加工) 폐수(廢水)의 최적(最適) 처리방안(處理方案)에 관한 연구(硏究))

  • Chung, Yoon Jin;Yang, Tae Du;Kim, Woong Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.7 no.1
    • /
    • pp.20-28
    • /
    • 1993
  • The Wastewater from the weight reduction process of polyester is more difficult to be treated biologically than the general wastewater from dyeing and finishing processes in textile industries. Above wastewater shows high pH, high organic strength and wide variation of organic loading. These characteristics are due to TPA and EG resulting from alkaline weight-reduction process and make trouble in the operation of activated sludge process. Therefore, the objective of this study is to develop the pretreatment method for the successful operation of treatment process. For the successful pretreatment process, the wastewater from weight-reduction process should be segregated from other wastewater stream and then acidified with concentrated sulfuric acid to precipitate out TPA from DST solution. At the optimum pH of 2. 2, the initial $COD_{cr}$ 60,000mg/l is reduced to 11,500mg/l and the removal efficiency of $COD_{cr}$ is 81.1%. The required amount of sulfuric acid for pretreatment is not greater than the amount for the the existing neutralization process. Moreover, the supernatant of pretreatment process can be reused in acidification of wastewater.

  • PDF

생물반응기와 광촉매반응기 시스템을 이용한 염료의 색도 제거

  • Yun, Jong-Tae;Sin, Min-Seok;Im, Dong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.463-467
    • /
    • 2003
  • Fundamental experiments were carried out about color removal efficiency of dyeing wastewater using a $bioreactor-TiO_2/UV$ reactor system. Color removal efficiencies of the Reactive Black 5 in the system were found to bo more than 80% in changes of dilution rate 0.04 to $0.08hr^{-1}$. In this research, a new color removal system of dying wastewater will be proposed after more investigation of decolorization efficiencies about different dyes and condition.

  • PDF

Study on characteristic of Advanced oxidation process for improvement of dyeing wastewater effluent quality (염색폐수 방류수 수질개선을 위한 고도산화처리에 관한 연구)

  • Lee, Sang-Hun;Park, Jun-Hyung;Shin, Dong-Hoon;Ryu, Seung-Han
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.118-118
    • /
    • 2012
  • 현재 정부는 친환경녹색성장을 모티브로 환경기준을 강화하고 있으며, 오염 발생원을 최소화 하고자 현재 가동중인 환경기초시설을 대상으로 고도산화공정을 추가하여 오염 배출량을 최소화 하도록 정부와 지자체가 독려하고 있는 중이다. 따라서 대표적인 환경오염 업종인 섬유/염색 관련업체는 강화되는 환경기준을 만족하기 위한 공정검토가 불가피한 현실이다. 특히 대구 OO염색공단은 염색업체가 집적되어 있어 난분해성 오염물질과 색도유발물질이 다량 발생되고 있으며, 폐수처리장에서 운영 중인 재래식 폐수처리공정으로는 강화되는 방류수 수질기준을 충족할 수 없다. 따라서 본 연구에서는 방류수 수질기준을 만족하기 위한 고도산화 공정을 검토하였으며, 그 공정의 최적인자를 도출하고자 하였다. 고도산화 공정에서 오존산화, Peroxone AOP, Fenton oxidation 공정을 검토하였으며, 강화되는 수질기준을 만족할 수 있는 최적인자 및 처리효율을 검토하였다. 그 결과 조건에 따라 COD, T-N, T-P, 색도 등에서 처리효율은 40 ~ 90% 범위로 경제성을 고려하여 최적의 운전조건을 도출 하였다.

  • PDF

Supercritical CO2 Dyeing and Finishing Technology - A Review (초임계 이산화탄소 염색 및 가공 기술)

  • Lee, Gyoyoung;Chae, Juwon;Lee, Sang Oh;Kim, Sam Soo;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.31 no.1
    • /
    • pp.48-64
    • /
    • 2019
  • With evolution in the production environment of the textile industry, the need for non-water-based dyeing technologies and eco-friendly process facilities in the dyeing and processing stages has increased. In recent years, supercritical fluid dyes have been developed and commercialized in Europe, centering on this demand. However, so far, such dyes have been mainly applied in the processing of PET fibers. Basic research has mainly involved investigation of dyeing by supercritical carbon dioxide or solubility of such dyes, and more in-depth research should be continuously carried out. In this review, we describe the types and characteristics of supercritical fluids that exhibit specific properties at pressures and temperatures over the critical point. In addition, the state of the art in the dyeing and processing technology using supercritical fluids and associated, processing problems, environmental regulation, and wastewater treatment issues are described in detail. We hope this review can contribute to the supercritical fluid technology being further developed as an environment friendly dyeing processing method. Furthermore, we expect that the technique can be used as a means of ensuring different, high-quality dyed products.

Color Removal of Real Textile Wastewater by Sequential Anaerobic and Aerobic Reactors

  • Oh You-Kwan;Kim Yu-Jin;Ahn Yeonghee;Song Seung-Koo;Park Sunghoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.419-422
    • /
    • 2004
  • Textile wastewater from the Pusan Dyeing Industrial Complex (PDIC) was treated utilizing a two-stage continuous system, composed of an upflow anaerobic sludge blanket reactor and an activated Sludge reactor. The effects of color and organic leading rates were studied by varying the hydraulic retention time and influent glucose concentration. The maximum color load to Satisfy the legal discharge limit of color intensity in Korea (400 ADMI, unit of the American Dye Manufacturers Institute) was estimated to be 2,700 $ADMI{\cdot}L^{-1}\;day^{-1}$. This study Indicates that the two-stage anaerobic/aerobic reaction system is potentially useful in the treatment of textile wastewater.

A Study on the Washability and Washing Conditions of the Industrial Alkaline Laundry Detergent Suitable for Water Discharge Standards and Detergent Regulations (수질 배출기준 및 세제 안전기준에 적합한 산업용 알칼리 세탁세제의 세척성과 세탁조건 연구)

  • Song, Hyunjoo;Song, Sunhye
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.250-257
    • /
    • 2021
  • Laundry industry has traditionally been considered an industry that generates large amounts of wastewater and Volatile Organic Compounds(VOCs). This is still the case until now. Household laundry detergents are produced and distributed within the safety regulations on the amount of harmful substances detected. While industrial laundry detergents are often distributed without safety regulations, and even laundry workers manufacture and use them on their own. This contaminates water and air and also threatens the safety of workers. This study is a basic study for distributing eco-friendly detergents(EFD-A) developed through previous studies to the laundry industry. Safety, washability and wastewater quality of EFD-A are evaluated. Three existing commercial detergents(PD1, PD2, LD4) are also evaluated to compare with EFD-A. The safety of detergents is confirmed by the content of optical brightener, VOCs, and arsenic. Washability is evaluated by the difference in reflectance of washed and unwashed artificial soiled fabrics according to detergent concentration, washing temperature, and washing time. TOC is used as the index of assessing the wastewater quality. The results are as follows; EFD-A doesn't contain the optical brighteners, VOCs, and arsenic. The optimal washing conditions for EFD-A are 3 g/L concentration, 40 ℃ washing temperature, and 30 min washing time. The soil removal efficiency is about 71 %, which was similar to or somewhat superior to that of PD1, PD2, and LD4. TOC is 63.5 %, which is about 15 % lower than the discharge limit. Through this study, the developed detergent EFD-A can be used as a safe and eco-friendly detergent for the human body and the environment.

Study on Treatment Characteristic of Advanced Oxidation Process using Ozone Oxidation and Peroxone AOP Process for Waste Dyeing Water Effluent Treatment (오존접촉산화 공정과 Peroxone AOP 공정을 이용한 염색폐수방류수 고도산화 처리특성 연구)

  • Park, Jun-Hyung;Shin, Dong-Hoon;Ryu, Seong-Han;Jo, Seog-Jin;Lee, Sang-Hun
    • Textile Coloration and Finishing
    • /
    • v.23 no.4
    • /
    • pp.274-283
    • /
    • 2011
  • Effect of pH on ozone oxidation and peroxone AOP(Advanced Oxidation Process) process was analyzed and the optimal efficiency for both processes was obtained at pH 7.5. In case of ozone oxidation process, the efficiencies of color, $COD_{Mn}$ and $BOD_5$ removal were measured to 93%, 70% and 89% at a reaction time of 50 min(ozone dosage of 111.67mg/$\ell$). When reaction time increased to 90 min(ozone dosage of 201mg/$\ell$), the efficiencies of color, $COD_{Mn}$ and $BOD_5$ removal were increased by 3~5 %, indicating that the increment of removal efficiency was insignificant considering longer reaction time. Similarly, the ozone/$H_2O_2$ ratio was optimized to 0.5 for peroxone AOP process. Removal efficiencies of color, $COD_{Mn}$ and $BOD_5$ were measured 95%, 81% and 94% at a reaction time of 50 min(ozone dosage of 111.67mg/$\ell$). When reaction time increased to 90min(ozone dosage of 201mg/$\ell$), the removal efficiency of color, CODMn, and BOD5 increased slightly by 1~5%.