Browse > Article
http://dx.doi.org/10.5764/TCF.2019.31.1.48

Supercritical CO2 Dyeing and Finishing Technology - A Review  

Lee, Gyoyoung (Department of Fiber System Engineering, Yeungnam University)
Chae, Juwon (Department of Fiber System Engineering, Yeungnam University)
Lee, Sang Oh (Department of Clothing and Fashion, Yeungnam University)
Kim, Sam Soo (Department of Fiber System Engineering, Yeungnam University)
Lee, Jaewoong (Department of Fiber System Engineering, Yeungnam University)
Publication Information
Textile Coloration and Finishing / v.31, no.1, 2019 , pp. 48-64 More about this Journal
Abstract
With evolution in the production environment of the textile industry, the need for non-water-based dyeing technologies and eco-friendly process facilities in the dyeing and processing stages has increased. In recent years, supercritical fluid dyes have been developed and commercialized in Europe, centering on this demand. However, so far, such dyes have been mainly applied in the processing of PET fibers. Basic research has mainly involved investigation of dyeing by supercritical carbon dioxide or solubility of such dyes, and more in-depth research should be continuously carried out. In this review, we describe the types and characteristics of supercritical fluids that exhibit specific properties at pressures and temperatures over the critical point. In addition, the state of the art in the dyeing and processing technology using supercritical fluids and associated, processing problems, environmental regulation, and wastewater treatment issues are described in detail. We hope this review can contribute to the supercritical fluid technology being further developed as an environment friendly dyeing processing method. Furthermore, we expect that the technique can be used as a means of ensuring different, high-quality dyed products.
Keywords
eco-friendly dyeing processing technology; $CO_2$ supercritical fluid technology; waterless dyeing processing technology; supercritical $CO_2$; supercritical fluid finishing; dye solubility;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Adachi, K. Taki, S. Nagamine, A. Yusa, and M. Ohshima, Supercritical Carbon Dioxide Assisted Ectroless Plating on Thermoplastic Polymers, J. of Supercritical Fluids, 49(2), 265(2009).   DOI
2 W. Oh, J. Kim, and H. Kim, Improved Adhesion Property and Electromagnetic Interference Shielding Effectiveness of Electroless Cu-plated Layer on Poly(ethylene terephthalate) by Plasma Treatment, J. of Applied Polymer Science, 84(7), 1369(2002).   DOI
3 T. Siwach and O. Masahiro, Supercritical Carbon Dioxide-assisted Electroless Nickel Plating on Polypropylene-The Effect of Copolymer Blend Morphology on metal-Polymer Adhesion, J. of Supercritical Fluids, 85, 123 (2014).   DOI
4 X. Zhao, H. Kazumasa, T. Isao, S. Okubayashi, and T. Hori, A New Method of Producing Conductive Aramid Fibers using Supercritical Carbon Dioxide, Surface and Coatings Technology, 201(3-4), 628(2005).   DOI
5 I. Andrew, Cooper, Polymer Synthesis and Processing using Supercritical Carbon Dioxide, J. of Materials Chemistry, 10(2), 207(2000).   DOI
6 M. Valcarcel, M. Lopez, L. Arce,J. Garrido, and A. Talanta, Selective Extraction of Astaxanthin from Crustaceans by Use of Supercritical Carbon Dioxide, Talanta, 64(3), 726(2004).   DOI
7 D. Yu, S. Mu, L. Liu, and W. Wang, Preparation of Electroless Silver Plating on Aramid Fiber with Good Conductivity and Adhesion Strength, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 483, 53(2015).   DOI
8 G. Montero, C. Smith, W. Hendrix, and D. Butcher, Supercritical Fluid Technology in Textile Processing: An Overview, Ind. Eng. Chem. Res., 39(12), 4806(2000).   DOI
9 A. Ferri, M. Banchero, L. Manna, and S. Sicardi, An Experimental Technique for Measuring High Solubilities of Dyesin SupercriticalCarbon Dioxide, J. of Supercritical Fluids, 30(1), 41(2004).   DOI
10 T. Dirk, M. Gerhard, and M. Schneider, High-pressure Solubility of Disperse Dyes in Near- and Supercritical Fluids: Measurements up to 100 MPa by a Static Method, J. of Supercritical Fluids, 13(1-3), 37(1998).   DOI
11 B. Cornelia, B. Wagner, and M. Schneider, High-pressure Solubility of 1,4-bis-(n-alkylamino)-9,10-anthraquinones in Near- and Supercritical Carbon Dioxide, J. of Supercritical Fluids, 13(1-3), 43(1998).   DOI
12 J. Beckman, Supercritical and Near-critical $CO_2$ in Green Chemical Synthesis and Processing, J. of Supercritical Fluids, 28(2-3), 121(2004).   DOI
13 E. Bacha, E. Cleve, J. Schuttken, E. Schollmeyer, and W. Rucker, Correlation of Solubility Data of Azo Disperse Dyes with the Dye Uptake of Poly(ethyleneterephthalate) Fibresin Supercritical Carbon Dioxide, Coloration Technology, 117(1), 13(2006).   DOI
14 Y. Iwai, M. Uno, H. Nagano, and Y. Arai, Measurement of Solubilities of Palmitic Acid in Supercritical Carbon Dioxide and Entrainer Effect of Water by FT-IR Spectroscopy, Coloration Technology, 28(2-3), 13(2004).
15 R. Tabaraki, T. Khayamian, and A. A. Ensafi, Wavelet Neural Network Modeling in QSPR for Prediction of Solubility of 25 Anthraquinone Dyes at Different Temperatures and Pressuresin Supercritical Carbon Dioxide, J. Mol. Graph. Model., 25(1), 46(2006).   DOI
16 R. Tabaraki, T. Khayamian, and A. A. Ensafi, Solubility Prediction of 21 Azo Dyesin Supercritical Carbon Dioxide Using Wavelet Neural Network, Dye. Pigment., 73(2), 230(2007).   DOI
17 A. Tarasova, F. Burden, J. Gasteiger, and A. D. Winkler, Robust Modelling of Solubility in Supercritical Carbon Dioxide Using Bayesian Methods, J. Mol. Graph. Model., 28(7), 593(2010).   DOI
18 I. Tabata, J. Lyu, S. Cho, and T. Hori, Relationship Between the Solubility of Disperse Dyes and Equilibrium Dye Adsorption in Supercritical Fluid Dyeing, Color Technol, 117(6), 346(2001).   DOI
19 J. S. Sanchez, M. T. F. Ponce, L. Casas, C. Mantell, J. Martinez, and I. Ossa, Impregnation of Polyester Fibers in Supercritical Carbon Dioxide, Applied Polymer Science, 128, 208(2017).
20 H. Sung and J. Shim, Solubility of C. I. Disperse Red 60 and C.I. Disperse Blue 60 in Supercritical Carbon Dioxide, J. of Chemical and Engineering Data, 44(5), 985 (1999).   DOI
21 T. Hori, K. Hirogaki, and I. Tabata, Present Situation of Supercritical Fluid Dyeing and Finishing, 1st International Symposium on Supercritical $CO_2$ Dyeing and Finishing, Daegu, pp.1-3, 2018.
22 S. Yoon and H. Byun, Application of Separation Technology and Supercritical Fluids Process, Clean Technology, 18(2), 123(2012).   DOI
23 Y. Ju, M. Lee, M. Woo, and S. Byun, The Current Status of Supercritical Fluid Extraction Technology and Industrial Applications, Korean J. Biotechnol. Bioeng., 20(5), 329(2005).
24 H. Lim, B. Choi, M. Park, S. Hwang, J. Park, J. Seo, J. Bang, E. Yoon, B. Kim, and D. Lee, Development of Power Turbine for Supercritical $CO_2$ Power System, Proceeding of Korea Supercritical Tech., Korea, pp.177-178, 2017.
25 G. Genov, Physical Processes of the $CO_2$ Hydrate Formation and Decomposition at Conditions Relevant to Mars, Ph.D. Thesis, Georg August University, 2005.
26 J. Walther, Mineral Solubilitiesin Supercritical $H_2O$ Solutions, Pure and Applied Chemistry, Pure and Appl. Chem, 58(12), 1585(1986).   DOI
27 S. Kim, M. Lee, S. Back, and B. Chun, Extraction and Identification of Volatile Isothiocyanates from Wasabi using Supercritical Carbon Dioxide, Korean Society for Biotechnology and Bioengineering, 22(3), 174(2007).
28 U. Min, M. Ark, J. Jeon, B. Choi, and H. Bae, Dye Uptake of Polyester Fiber in Supercritical Fluids, Korean Chemical Engineering Research, 42(2), 213(2004).
29 J. Choi, H. Lim, K. Han, H. Kang, and D. Choi, Characterization of Degradation Features and Degradative Products of Poplar Wood(Populus alba${\times}$glandulosa) by Flow Type-Supercritical Water Treatment, J. Kor. For. En., 24(1), 39(2015).
30 M. Fr and H. Ma, Biodiesel Production: A Review, Bioresour Technology, 70, 1(1999).   DOI
31 T. Kim, G. Park, W. Kong, and Y. Lee, Supercritical Dyeing Technology, Clean Technology, 24(1), 1(2018).   DOI
32 M. Garcia, A. Gonzalo, S. Luis, J. Arauzo, and C. Simoes, Methanolysis and Ethanolysis of Animal Fats: a Comparative Study of the Influence of Alcohols, Chemical Industry, 17(1), 91(2011).
33 K. Harvind, R. M. Tapaswy, P. D. Patil, S. Ponnusamy, C. Peter, T. Schaub, and D. Shuguang, Direct Conversion of Wet Algae to Fatty Acid Ethyl Esters under Supercritical Ethanol Conditions, J. Fuel, 115, 720(2014).   DOI
34 D. Prafulla, P. V. Gude, M. Aravind, D. Shuguang, P. Cooke, M. Stuart, I. Rhodes, P. Lammers, and N. Nagamany, Optimization of Direct Conversion of Wet Algae to Biodiesel under Supercritical Methanol Conditions, Bioresource Technology, 102(1), 118(2011).   DOI
35 J. Lee, Review : Present Status of Green Chemistry, J. of the KIMST, 14(2), 246(2011).
36 H. Zheng, J. Zhang, J. Yan, and L. Zheng, An Industrial Scale Multiple Supercritical Carbon Dioxide Apparatus and its Eco-friendly Dyeing Production, $CO_2$ Utilizaton, 6(3), 272(2016).
37 Y. Lee, Supercritical Fluid Dyeing Technology, Clean Technology, 55(7), 1(2015).
38 M. Liu,J. Hong, Z. Hao, J. Wu, X. Xiong, and L. Zheng, Eco-friendly Curcumin-based Dyes for Supercritical Carbon Dioxide Natural Fabric Dyeing, Cleaner Production, 187(1), 1262(2018).
39 C. Koo, S. Yu, B. Baek, H. Cho, Y. Lee, and S. Hong, Recycling Technology of Crosslinked-Polymers Using Supercritical Fluid, Elastomers and Composites, 47(2), 111(2012).   DOI
40 J. K. Bal, T. Beuvier, M. S. Chebil, G. Vignaud, Y. Grohens, M. K. Sanyal, and M. K. Gibaud, Relaxation of Ultrathin Polystyrene Films Hyperswollen in Supercritical Carbon Dioxide, Macromolecules, 47(24), 8738 (2014).   DOI
41 C. Choi and J. Song, Swelling and Mechanical Properties of Shale and Sandstone after Reacted with Supercritical $CO_2$, Proceedings of the ISRM Regional Symposium, Seoul, Vol.22(4), pp.266-275, 2012.
42 G. Kim, Supercritical Fluid Extraction Technology for Food Industry, Technology for Food Industry, Food Industry and Nutrition, 17(1), 17(2012).
43 E. Lee, K. Chang, Y. Kwon, and E. Lee, Optimization of the Alliins Extraction in the Garlic by Supercritical Carbon Dioxide, Food Engineering Progress, 1, 149 (1997).
44 G. Musgrove, A. M. Rimpel, and J. C. Wilkes, Fundamentals of Supercritical $CO_2$, ASME Turbo Expo, Copenhagen, GT2012, p.70181, 2012.
45 Y. Cho, H. Kim, J. Kim, S. Lee, W. Kim, J. Ryu, and G. Lim, Extraction of Glabridin from Licorice Using Supercritical Carbon Dioxide, KSBB, 19(6), 427(2004).
46 A. Demirbas, Biodiesel from Vegetable Oils via Transesterification in Supercritical Methanol, Energy Conversion and Management, 43(17), 2349(2002).   DOI
47 M. N. Varma and G. Madras, Synthesis of Biodiesel from Castor Oil and Linseed Oil in Supercritical Fluids, Industrial and Engineering Chemistry Research, 46(1), 1(2007).   DOI
48 S. Saka and D. Kusdiana, Biodiesel Fuelfrom Rapeseed Oil as Prepared in Supercritical Methanol, J. Fuel, 80(2), 225(2001).   DOI
49 N. Martini and S. Schell, Plant Oils as Fuels: "Present State of Science and Future Developments", Springer Verlag, Potsdam, pp.16-18, 2012.
50 C. Xu and T. Etcheverry, Hydro-liquefaction of Woody Biomass in Sub- and Supercritical Ethanol with Iron-based Catalysts, Fuel, 87(3), 335(2008).   DOI
51 G. Knothe, Dependence of Biodiesel Fuel Properties on the Structure of Fatty Acid Alkyl Esters, Fuel Process Technology, 86(10), 1059(2005).   DOI
52 H. Joshi, B. Moser, J. Toler, and T. Walker, Preparation and Fuel Properties of Mixtures of Soybean Oil Methyl and Ethyl Esters, Biomass Bioenergy, 34(1), 14(2010).   DOI
53 D. Kusdiana and S. Saka, Kinetics of Transesterification in Rapeseed Oil to Biodiesel Fuel as Treated in Supercritical Methano, Fuel, 81(5), 693(2001).   DOI
54 G. An, W. Ma, Z. Sun, Z. Liu, B. Han, and S. Miao, Preparation of Titania/carbon Nanotube Composites using Supercritical Ethanol and their Photocatalytic Activity for Phenol Degradation under Visible Light Irradiation, Carbon, 45(9), 1795(2007).   DOI
55 E. Bach, E. Cleve, and E. Schollmeyer, Past, Present and Future of Supercritical Fluid Dyeing Technology-an Overview, Rev. Prog. Color, 32(1), 88(2002).   DOI
56 K. Poulakis, M. Spee, G. Schneider, D. Knittel, H. Buschmann, and E. Schollmeyer, Dyeing of Polyester Fibers in Supercritical Carbon Dioxide, Chemiefasern Textilind, 41, 534(1991).
57 D. Knittel, W. Saus, and E. Schollmeyer, Dyeing of Textiles in Supercritical Carbon Dioxide, Textile Research J., 63(3), 135(1993).   DOI
58 W. Saus, D. Knittel, and E. Schollmeer, Application of Supercritical Carbon Dioxide in Finishing Processes, Textile Praxis Int., 84(4), 534(1993).
59 C. Tsai, H. Lin, and M. Lee, Fluid Phase Equilibria, Solubility of Disperse Yellow 54 in Supercritical Carbon Dioxide with or without Cosolvent, Fluid Phase Equilibria, 260(2), 287(2007).   DOI
60 J. Schnitzler, R. Eggers, and J. Mass, Transfer in Polymersin a Supercritical $CO_2$-Atmosphere, Supercrit, Fluids, 16(1), 81(1999).
61 D. Bartle, A. Clifford, A. Jafar, and F. Shilstone, Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide, J. of Physical and Chemical Reference Data, 20(4), 713(1996).   DOI
62 C. Kirby and M. McHugh, Phase Behavior of Polymers in Supercritical Fluid Solvents, Chem. Rev., 99(2), 565 (1999).   DOI
63 B. Ping and J. Dai, Relationships between the Solubility of C. I. Disperse Red 60 and Uptake on PET in Supercritical $CO_2$, J. Chem. Eng. Data, 50(3), 838(2005).   DOI
64 N. Brantley, S. Kazarian, and C. Eckert, In situ Spectroscopy of Polymers Subjected to Supercritical $CO_2$: Plasticization and Dye Impregnation, J. Appl. Polym. Sci., 51(4), 491(2000).
65 H. Lin, C. Ho, M. Lee, and J. Supercrit, Solubility of Disperse Yellow 54 in Supercritical Carbon Dioxide with or without Cosolvent, Fluid Phase Equilibria, 260(2), 287(2004).   DOI
66 S. Park, D. I. Tuma, S. Kim, Y. Lee, and J. Shim, Sorption of C. I. Disperse Red 60 in Polystyrene and PMMA Films and Polyester and Nylon 6 Textilesin the Presence of Supercritical Carbon Dioxide, Korean J.Chem. Eng., 27(1), 299(2010).   DOI
67 E. Bach, E. Cleve, E. Schollmeyer, M. Bork, and P. Korner, The Dyeing of Natural Gibres with Reactive Disperse Dyes in Supercritical Carbon Dioxide, Dyes and Pigments, 56(1), 27(2003).   DOI
68 A. Ferri, M. Banchero, L. Manna, and S. Sicardi, Impregnation of PVP Microparticles with Ketoprofen in the Presence of Supercritical $CO_2$, J. Supercrit. Fluids, 42(3), 378(2006).   DOI
69 S. Liao, Dyeing Nylon-6,6 with Some Hydrophobic Reactive Dyes by Supercritical Processing, J. Polym. Res., 11(4), 285(2005).   DOI
70 M. Banchero, Supercritical Fluid Dyeing of Synthetic and Natural Textiles - A Review, Color. Technol., 129(1), 2(2013).   DOI
71 M. Kraan, M. Fernandez, G. Woerlee, W. T. Veugelers, and G. Witkamp, Dyeing of Natural and Synthetic Textiles in Supercritical Carbon Dioxide with Disperse Reactive Dyes, J. Supercrit. Fluids, 40(3), 470(2007).   DOI
72 J. Long, Y. Ma, and J. Zhao, Investigations on the Level Dyeing of Fabrics in Supercritical Carbon Dioxide, J. Supercritical Fluids, 57(1), 80(2011).   DOI
73 M. Kraan, Process and Equipment Development for Textile Dyeing in Supercritical Carbon Dioxide, Ph.D. Thesis, Delft University of Technology, 2005.
74 A. Hou, B. Chen, J. Dai, and K. Zhang, Using Supercritical Carbon Dioxide as Solvent to Replace Water in Polyethylene Terephthalate(PET) Fabric Dyeing Procedures, J. Clean. Prod., 18(10-11), 1009(2010).   DOI
75 C. Tsai, H. Lin, and M. Lee, Solubility of C. I. Disperse Violet 1 in Supercritical Carbon Dioxide with or without Cosolvent, J. of Chemical and Engineering Data, 53(9), 2163(2008).   DOI
76 G. Woerlee, Dry-cleaning with High-pressure Carbon Dioxide-the Influence of Mechanical Action on Washing-results, J. of Supercritical Fluids, 27(1), 97(2003).   DOI
77 G. Huang, Y. Xing, and J. Dai, Proceeding International Conference Computer Distributed Control and Intelligent Environmental Monitoring, Changsa, pp.48-51, 2011.
78 P. Michel, Supercritical Fluid Applications: Industrial Developments and Economic Issues, Ind. Eng. Chem. Res., 39(12), 4531(2000).   DOI
79 E. Bach, E. Cleve, E. Schollmeyer, P. Nunnerich, and H. Dierkes, Experience with the Uhde $CO_2$-Dyeing Plant on a Technical Scale Part 3: Quality of Polyester Dyed in Supercritical Carbon Dioxide, Melliand International, 10(1), 66(2004).
80 G. Montero, D. Hinks, and J. Hooker, Reducing Problems of Cyclic Trimer Deposits in Supercritical Carbon Dioxide Polyester Dyeing Machinery, J. Supercrit. Fluids, 26(1), 47(2003).   DOI
81 A. Schmidt, E. Bach, and E. Schollmeyer, The Dyeing of Natural Fibres with Reactive Disperse Dyesin Supercritical Carbon Dioxide, Dyes and Pigments, 56(1), 27(2003).   DOI
82 F. Bruhlmann, M. Leupin, K. Erismann, A. Fiechter, and J. Biotechnol, Enzymatic Degumming of Ramie Bast Fibers, J. Biotechnology, 76(1), 43(2000).   DOI
83 L. Zhou, Y. K. W.C. Yuen, and X. Zhou, Effect of Mercerisation and Crosslinking on the Dyeing Properties of Ramie Fabric, Coloration Technology, 119(3), 170 (2003).   DOI
84 K. Hirogaki, I. Tabata, K. Hisada, and T. Hori, An Investigation of the Morphological Changes in Poly(ethylene terephthalate) Fiber Treated with Supercritical Carbon Dioxide under Various Conditions, J. of Supercritical Fluids, 38(3), 399(2006).   DOI
85 E. Kim and E. Csiszaar, The Pretreatment of Ramie Fiber Material with Supercritical $CO_2$ Fluid, J. of Natural Fibers, 2(2005), 39(2012).
86 L. Zhou, K. Yeung, and W. Yuen, Effect of NaOH Mercerization on the Crosslinking of Ramie Yarn Using 1,2,3,4-Butanetetracarboxylic Acid, Textile Research J., 72(6), 531(2002).   DOI
87 H. Zheng,R. Zhang, X. Zhao, and T. Hori, The Pretreatment of Ramie Fiber Material with Supercritical $CO_2$, Applied Mechanics and Materials, 236-237, 139(2012).   DOI