• Title/Summary/Keyword: dual detection

Search Result 297, Processing Time 0.023 seconds

Performance analysis of carrier recovery using pilot tone in mobile radio channel (이동통신채널에서 파일롯 톤을 이용한 반송파 동기의 성능분석)

  • 나경필;김의묵;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.7
    • /
    • pp.1820-1832
    • /
    • 1996
  • The performance of a carrier recovery is severely degraded because of amplitude fluctuations and random phases of the received signai caused by multipath fading in mobile radio channel. In this paper, we present two kinds of carrier recovery technique using pilot tone such as TCT(Tone Calibration Technique) and DTCT(Dual Tone Calibration Technique) and analyze these performance both in Rayleigh and Rician fadings. we also evaluate the BER performance of two carrier recovery systems in terms of design parameters such as pilot-to-singnal power ratio, and detection filter-to-pilot filter bandwidth ratio.

  • PDF

Design and Construction of a Surface Encoder with Dual Sine-Grids

  • Kimura, Akihide;Gao, Wei;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.20-25
    • /
    • 2007
  • This paper describes a second-generation dual sine-grid surface encoder for 2-D position measurements. The surface encoder consisted of a 2-D grid with a 2-D sinusoidal pattern on its surface, and a 2-D angle sensor that detected the 2-D profile of the surface grid The 2-D angle sensor design of previously developed first-generation surface encoders was based on geometric optics. To improve the resolution of the surface encoder, we fabricated a 2-D sine-grid with a pitch of $10{\mu}m$. We also established a new optical model for the second-generation surface encoder that utilizes diffraction and interference to generate its measured values. The 2-D sine-grid was fabricated on a workpiece by an ultra precision lathe with the assistance of a fast tool servo. We then performed a UV-casting process to imprint the sine-grid on a transparent plastic film and constructed an experimental setup to realize the second-generation surface encoder. We conducted tests that demonstrated the feasibility of the proposed surface encoder model.

Development of Fuzzy Logic-Based Diagnosis Algorithm for Fault Detection Of Dual-Type Temperature Sensor for Gas Turbine System (가스터빈용 듀얼타입 온도센서의 고장검출을 위한 퍼지로직 기반의 진단 알고리즘 개발)

  • Young-Bok Han;Sung-Ho Kim;Byon-Gon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Due to the recent increase in new and renewable energy, gas turbine generators start and stop every day to supply high-quality power, and accordingly, the life span of high-temperature parts is shortened and the failure of combustion chamber temperature sensors increases. Therefore, in this study, we proposed a fuzzy logic-based failure diagnosis algorithm that can accurately diagnose and systematically detect the failure of the sensor when the dual temperature sensor used for gas turbine control fails, and to confirm the usefulness of the proposed algorithm We tried to confirm the usefulness of the proposed algorithm by performing various simulations under the matlab/simulink environment.

Algorithm for Detecting Direction of Single IF Scheme CW Radar Sensor (단일 IF 방식 CW 레이더 센서의 방향 검출 알고리즘)

  • Han, Byung-Hun;Shin, Hyun-Jun;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2905-2910
    • /
    • 2015
  • CW Radar Sensors can be categorized into Single and Dual by its IF output type. Dual IF type is used for detecting the direction of moving objects. However, Dual IF type has more complicated circuitry than Single IF type and higher cost due to more parts required. In this paper, we propose an algorithm for Single IF type CW radar sensors to detect the direction of moving objects. It performs FFT on signals created at IF output when an object moves and determines approach, stop and recede according to amplitude variations. In order to verify the algorithm, a function generator is used to create a virtual signal and confirmed that it accurately detects the directions according to amplitude variations.

Current Control of 12-pulse Dual Converter for High Current Coil Power Supply (대전류 코일 전원 공급장치를 위한 12펄스 듀얼 컨버터의 전류제어)

  • 송승호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.332-338
    • /
    • 2002
  • High current coil power supply for superconductivity coil of tokamak requires fast dynamics performance of di/dt and smooth change over of current direction. To meet the specification high performance DSP-based controller Is designed for 12-pulse thyristor dual converter with interphase transformer(IPT). Not only the total current of Y and $\Delta$ converter units but also the difference for those should be regulated fast and accurately. Proportional and integral controller is designed for current difference control and the controller output is compensated to $\Delta$ converter. The source voltage phase angle detection and gate pulse generation algorithm are implemented in software for higher reliability of current control. The current error Is reduced by selection of appropriate initial gating angle during the transient of change over of current direction between thyristor converters.

Intelligence Security and Surveillance System in Sensor Network Environment Using Integrated Heterogeneous Sensors (이 기종간 통합 센서를 이용한 센서네트워크 환경에서의 지능형 보안감시 시스템)

  • Oh, Suk-Jun;Moon, Seung-Jin;Choi, Sun-O
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.7
    • /
    • pp.551-562
    • /
    • 2013
  • Current CCTV systems, which require continuous monitoring of the screens, have the limitation to detect and respond to the crime scenes in timely manner. Therefore, in recent years, the request for more intlligent surveillance system, with a ubiquitous sensor network, is increasing in order to behave more humanly fashions. Such systems require cllective data processing of the environments based on various sensors. In this article, we suggests a new paradigm based surveillance system which integrates PSD and dual PIR sensors. The proposed system evlves from a existing indoor intrusion detection system which can only identify the intrusion event to a better inteligent system with context awareness. We have conducted the various simulations in order to prove the effectiveness of the proposed system.

Fixed Homography-Based Real-Time SW/HW Image Stitching Engine for Motor Vehicles

  • Suk, Jung-Hee;Lyuh, Chun-Gi;Yoon, Sanghoon;Roh, Tae Moon
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1143-1153
    • /
    • 2015
  • In this paper, we propose an efficient architecture for a real-time image stitching engine for vision SoCs found in motor vehicles. To enlarge the obstacle-detection distance and area for safety, we adopt panoramic images from multiple telegraphic cameras. We propose a stitching method based on a fixed homography that is educed from the initial frame of a video sequence and is used to warp all input images without regeneration. Because the fixed homography is generated only once at the initial state, we can calculate it using SW to reduce HW costs. The proposed warping HW engine is based on a linear transform of the pixel positions of warped images and can reduce the computational complexity by 90% or more as compared to a conventional method. A dual-core SW/HW image stitching engine is applied to stitching input frames in parallel to improve the performance by 70% or more as compared to a single-core engine operation. In addition, a dual-core structure is used to detect a failure in state machines using rock-step logic to satisfy the ISO26262 standard. The dual-core SW/HW image stitching engine is fabricated in SoC with 254,968 gate counts using Global Foundry's 65 nm CMOS process. The single-core engine can make panoramic images from three YCbCr 4:2:0 formatted VGA images at 44 frames per second and frequency of 200 MHz without an LCD display.

Measurement of TOF of fast neutrons with 238U target

  • Li, Meng;Guan, Yuanfan;Lu, Chengui;Zhang, Junwei;Yuan, Xiaohua;Duan, Limin;Yang, Herun;Hu, Rongjiang;He, Zhiyong;Wei, Xianglun;Ma, Peng;Gan, Zaiguo;Yang, Chunli;Zhang, Hongbin;Chen, Liang;Qiu, Tianli;Hou, Yikai
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1964-1969
    • /
    • 2021
  • We developed a Dual-PPACs detector for fast neutron measurements that consists of two sets of PPAC: conventional PPAC and fission PPAC. A238U(U3O8) coating is placed in the fission PPAC's anode, which is used as the neutrons conversion layer. An experiment was performed to measure neutron time-of-flight (TOF) in which 252Cf spontaneous fission source was used. An excellent time resolution of 164ps has been observed at 6 mbar in isobutene gas. With the excellent time resolution of Dual-PPACs detector, exact neutron energy can be extracted from the timing measurement. The experimental detection efficiency was 1.9 × 10-7, consistent with the efficiency of 2.5 × 10-7 given by a Geant4 simulation. Ultimately, the results show that the Dual-PPACs detector is a suitable candidate for measuring fast neutrons in the future CiADS system.

Digital n-γ Pulse Shape Discrimination in Organic Scintillators with a High-Speed Digitizer

  • Kim, Chanho;Yeom, Jung-Yeol;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.2
    • /
    • pp.53-63
    • /
    • 2019
  • Background: As neutron fields are always accompanied by gamma rays, it is essential to distinguish neutrons from gamma rays in the detection of neutrons. Neutrons and gamma rays can be separated by pulse shape discrimination (PSD) methods. Recently, we performed characterization of a stilbene scintillator detector and an EJ-301 liquid scintillator detector with a high-speed digitizer DT5730 and investigated optimized PSD variables for both detectors. This study is for providing a basis for developing fast neutron/gamma-ray dual-particle imager. Materials and Methods: We conducted PSD experiments using stilbene scintillator and EJ-301 liquid scintillator and evaluated neutron and gamma ray discriminability of each PSD method with a $^{137}Cs$ gamma source and a $^{252}Cf$ neutron source. We implemented digital signal processing techniques to apply two PSD methods - the charge comparison (CC) method and the constant time discrimination (CTD) method - to distinguish neutrons from gamma rays. We tried to find optimized PSD variables giving the best discriminability in a given experimental condition. Results and Discussion: For the stilbene scintillator detector, the charge comparison method and the constant time discrimination method both delivered the PSD FOM values of 1.7. For the EJ-301 liquid scintillator detector, both PSD methods delivered the PSD FOM values of 1.79. With the same PSD variables, PSD performance was excellent in $300{\pm}100keVee$, $500{\pm}100keVee$, and $700{\pm}100keVee$ energy regions. This result shows that we can achieve an effective discrimination of neutrons from gamma rays using these scintillator detector systems. Conclusion: We applied both PSD methods to a stilbene and a liquid scintillator and optimized the PSD performance represented by FOM values. We observed a good separation performance of both scintillators combined with a high-speed digitizer and digital PSD. These results will provide reference values for the dual-particle imager we are developing, which can image both fast neutrons and gamma rays simultaneously.

Regional Distribution of Isotropy Magnetic Property of Dual-type Giant Magnetoresistance-Spin Valve Multilayer (이중구조 거대자기저항-스핀밸브 박막의 자기등방성 영역분포에 관한 연구)

  • Khajidmaa, Purevdorj;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.6
    • /
    • pp.193-199
    • /
    • 2013
  • The regional distribution of magnetic isotropy depending on the post annealing condition for the dual-type structure GMR-SV (giant magnetoresistance-spin valve) of NiFe/Cu/NiFe/IrMn/NiFe/Cu/NiFe multilayer was investigated. The rotation of in-plane ferromagnetic layer induced by controlment of the post annealing temperature inside of the vacuum chamber. The magnetoresistive curves of a dual-type IrMn based GMR-SV depending on the direction of the magnetization easy axis of the free layer and the pinned layer are measured by between $0^{\circ}$ and $360^{\circ}$ angles for the applied fields. The optimum annealing temperature having a steady and isotropy magnetic sensitivity of 1.52 %/Oe was $107^{\circ}C$ in the rotational section of $0{\sim}90^{\circ}$. By investigating the switching process of magnetization for an arbitrary measuring direction, the in-plane orthogonal magnetization for the dual-type GMR-SV multilayer can be used by a high sensitive biosensor for detection of magnetized micro-beads.