Browse > Article
http://dx.doi.org/10.4283/JKMS.2013.23.6.193

Regional Distribution of Isotropy Magnetic Property of Dual-type Giant Magnetoresistance-Spin Valve Multilayer  

Khajidmaa, Purevdorj (Department of Oriental Biomedical Engineering, Sangji University)
Lee, Sang-Suk (Department of Oriental Biomedical Engineering, Sangji University)
Abstract
The regional distribution of magnetic isotropy depending on the post annealing condition for the dual-type structure GMR-SV (giant magnetoresistance-spin valve) of NiFe/Cu/NiFe/IrMn/NiFe/Cu/NiFe multilayer was investigated. The rotation of in-plane ferromagnetic layer induced by controlment of the post annealing temperature inside of the vacuum chamber. The magnetoresistive curves of a dual-type IrMn based GMR-SV depending on the direction of the magnetization easy axis of the free layer and the pinned layer are measured by between $0^{\circ}$ and $360^{\circ}$ angles for the applied fields. The optimum annealing temperature having a steady and isotropy magnetic sensitivity of 1.52 %/Oe was $107^{\circ}C$ in the rotational section of $0{\sim}90^{\circ}$. By investigating the switching process of magnetization for an arbitrary measuring direction, the in-plane orthogonal magnetization for the dual-type GMR-SV multilayer can be used by a high sensitive biosensor for detection of magnetized micro-beads.
Keywords
dual-type structure; giant magnetoresistance-spin valve (GMR-SV) thin film; magnetization easy axis; magnetoresistance curve; post annealing treatment; isotropy magnetic property; magnetic sensitivity;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 S. H. Park, K. S. Soh, M. C. Ahn, D. G. Hwang, and S. S. Lee, J. Kor. Mag. Soc. 16, 157S (2006).   DOI   ScienceOn
2 B. M. de Boer, J. A. H. M. Kahlman, T. P. G. H. Jansen, H. Duric, and J. Veen, Biosens. Bioelectron. 22, 2366 (2006).
3 G. Li, S. Sun, R. J. Wilson, R. L. White, N. Pourmand, and S. X. Wang, Sens. Actuators: A 126, 98 (2006).   DOI   ScienceOn
4 S. S. Lee, S. H. Park, and K. S. Soh, Sae Mulli 52, 564 (2006).
5 J. H. Min, A. Y. Song, Y. K. Kim, and J. H. Wu, J. Kor. Mag. Soc. 19, 34 (2009).
6 J. G. Choi, Y. S. Park, and S. S. Lee, J. Kor. Mag. Soc. 22, 173 (2012).   DOI   ScienceOn
7 S. H. Park, K. S. Soh, D. G. Hwang, J. R. Rhee, and S. S. Lee, J. Magnetics 13, 30 (2008).   DOI   ScienceOn
8 W. H. Lee, D. G. Hwang, and S. S. Lee, J. Magnetics 14, 18 (2009).   DOI   ScienceOn
9 J. G. Choi, I. S. Koh, Y. M. Gong, M. H. Kim, Y. S. Park, D. G. Hwang, and S. S. Lee, J. Kor. Mag. Soc. 19, 1 (2009).   DOI   ScienceOn
10 D. K. Wood, K. K. Ni, D. R. Schmidt, and A. N. Cleland, Sens. Actuators: A 120, 1 (2005).   DOI   ScienceOn
11 D. W. Kim, J. H. Lee, M. J. Kim, and S. S. Lee, J. Magnetics 14, 80 (2009).   DOI   ScienceOn
12 P. Khajidmaa, K. J. Park, and S. S. Lee, J. Kor. Mag. Soc. 23, 98 (2013).   DOI   ScienceOn
13 J. H. Lee, B. Y. Chung, and J. H. Jang, CERAMIST 12, 21 (2009).
14 D. A. Baker, Nature 405, 39 (2000).   DOI   ScienceOn
15 D. L. Graham, H. A. Feliciano, P. P. Fretias, L. A. Clarke, and M. D. Amaral, Sens. Actuators: B 107, 936 (2005).   DOI   ScienceOn
16 J. G. Choi, T. J. Kwak, J. T. Shim, and S. S. Lee, J. Kor. Mag. Soc. 20, 35 (2010).   DOI   ScienceOn