• 제목/요약/키워드: dry and wet processes

검색결과 107건 처리시간 0.029초

Enhanced Cathodoluminescence of KOH-treated InGaN/GaN LEDs with Deep Nano-Hole Arrays

  • Doan, Manh-Ha;Lee, Jaejin
    • Journal of the Optical Society of Korea
    • /
    • 제18권3호
    • /
    • pp.283-287
    • /
    • 2014
  • Square lattice nano-hole arrays with diameters and periodicities of 200 and 500 nm, respectively, are fabricated on InGaN/GaN blue light emitting diodes (LEDs) using electron-beam lithography and inductively coupled plasma reactive ion etching processes. Cathodoluminescence (CL) investigations show that light emission intensity from the LEDs with the nano-hole arrays is enhanced compared to that from the planar sample. The CL intensity enhancement factor decreases when the nano-holes penetrate into the multiple quantum wells (MQWs) due to the plasma-induced damage and the residues. Wet chemical treatment using KOH solution is found to be an effective method for light extraction from the nano-patterned LEDs, especially, when the nano-holes penetrate into the MQWs. About 4-fold CL intensity enhancement factor is achieved by the KOH treatments after the dry etching for the sample with a 250-nm deep nano-hole array.

기능성 미장 모르타르의 현장 적용을 위한 재료별 기초 물성에 관한 평가 (Evaluation of the Basic Properties of Materials for Application of Functional Plaster Mortar)

  • 조도영;김규용;미야우치 히로유키
    • 한국건축시공학회지
    • /
    • 제12권2호
    • /
    • pp.152-160
    • /
    • 2012
  • 건축공사의 선진화는 시공기술과 함께 재료의 성능향상이 동반되어야 한다. 특히 습식공사의 경우 인력에 의한 의존도가 높고, 재료 사용의 다양화가 미진한 대표적인 공정이라 할 수 있다. 이와 같은 마감 모르타르 공사에서 품질 및 시공의 선진화를 위한 다양한 모르타르 재료에 대한 물리적 특성 시험을 통하여 비교·확인함으로 향후 습식 미장공사의 다양한 재료 적용과 기계화 시공을 넘어 친환경 기능성 재료의 사용까지 발전될 수 있도록 제안해 보았다. 특히 공장생산 제품인 건조시멘트 모르타르 제품을 기준으로 기계화 시공이 가능한 수지플라스터와 친환경 석고플라스터의 사용 확대를 위한 각 재료의 품질 특성에 관한 연구를 통해 마감 모르타르 공사의 다양화와 선진화 방향을 제시하였다. 그 결과 압축강도의 경우 시멘트를 기본으로 하는 재료에서는 초기 양생조건이 품질 확보에 가장 중요한 관리 항목임을 다시 한번 확인할 수 있었으며, 마감 모르타르의 작업 후 균열 안정성에 영향을 주는 길이변화의 경우 석고플라스터가 가장 우수한 결과를 나타냈으며, 최종 응결이 빠르게 나타남으로 후속 공정을 보다 빨리 진행할 수 있어 공기단축에도 기여할 수 있을 것으로 판단된다.

다이렉트 프린팅용 청정 금속 및 세라믹 나노 입자 잉크 기술 동향 (Trends on Technology of Eco-friendly Metal and Ceramic Nanoparticle Inks for Direct Printing)

  • 홍성제;김종웅;한철종;김용성;홍태환
    • 마이크로전자및패키징학회지
    • /
    • 제17권2호
    • /
    • pp.1-9
    • /
    • 2010
  • 본고에서는 청정 공정을 이용한 다이렉트 프린팅용 금속 및 세라믹 나노 입자 및 잉크 소재의 국내외 기술 동향 및 시장 전망에 대해 고찰하였다. 다이렉트 프린팅용 나노 입자 기술은 해외의 경우 UILVAC에서 연구 개발이 활발하게 진행되고 있는데, 주로 가스중 증발법에 의해 진행되고 있었다. 또한, 국내의 경우 전자부품연구원 등 산학연에서 활발하게 진행되고 있고, 가스중 증발법 및 저온 합성법 등 건식과 습식법에 의해 진행되고 있었다. 또한 이러한 금속 및 세라믹 나노 분말 입자를 이용하여 잉크를 제조하고 이를 다이렉트 프린팅 공정에 적용하여 박막 및 패턴을 제작하는 연구도 진행되고 있었다. 이러한 다이렉트 프린팅용 나노 입자 및 잉크는 전기, 전자, 정보, 통신 산업의 핵심 소재로서 관련 산업 및 시장이 빠른 속도로 증가하고 있다. 이러한 청정 공정 기술은 연구개발 단계에 있어 국내에서도 청정 기술을 이용하여 선진 기술에 접근하고 있는 결과가 제시되고 있다. 이와 같이 다이렉트 프린팅용 금속 및 세라믹 나노 입자 및 잉크의 기술에 있어서 세계적인 기술의 주도를 위해선 나노 입자 및 잉크의 청정 제조의 원천 기술 개발을 통한 기술 확보 및 시장의 경쟁을 통한 우위 점유가 필요하다.

A Review on Transfer Process of Two-dimensional Materials

  • Kim, Chan;Yoon, Min-Ah;Jang, Bongkyun;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • 제36권1호
    • /
    • pp.1-10
    • /
    • 2020
  • Large-area two-dimensional (2D) materials synthesized by chemical vapor deposition on donor substrates are promising functional materials for conductors, semiconductors, and insulators in flexible and transparent devices. In most cases, 2D materials should be transferred from a donor substrate to a target substrate; however, 2D materials are prone to damage during the transfer process. The damages to 2D materials during transfer are caused by contamination, tearing, and chemical doping. For the commercialization of 2D materials, a damage-free, large-area, and productive transfer process is needed. However, a transfer process that meets all three requirements has yet to be developed. In this paper, we review the recent progress in the development of transfer processes for 2D materials, and discuss the principles, advantages, and limitations of each process. The future prospects of transfer processes are also discussed. To simplify the discussion, the transfer processes are classified into four categories: wet transfer, dry transfer, mechanical transfer, and electro-chemical transfer. Finally, the "roll-to-roll" and "roll-to-plate" dry transfer process is proposed as the most promising method for the commercialization of 2D materials. Moreover, for successful dry transfer of 2D materials, it is necessary to clearly understand the adhesion properties, viscoelastic behaviors, and mechanical deformation of the transfer film used as a medium in the transfer process.

Vapor Deposition Polymerization 방법을 이용한 유기 박막 트렌지스터의 제작 (Fabrication of Organic Thin-Film Transistor Using Vapor Deposition Polymerization Method)

  • 표상우;김준호;김정수;심재훈;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.190-193
    • /
    • 2002
  • The processing technology of organic thin-film transistors (Ons) performances have improved fur the last decade. Gate insulator layer has generally used inorganic layer, such as silicon oxide which has properties of a low electrical conductivity and a high breakdown field. However, inorganic insulating layers, which are formed at high temperature, may affect other layers termed on a substrate through preceding processes. On the other hand, organic insulating layers, which are formed at low temperature, dose not affect pre-process. Known wet-processing methods for fabricating organic insulating layers include a spin coating, dipping and Langmuir-Blodgett film processes. In this paper, we propose the new dry-processing method of organic gate dielectric film in field-effect transistors. Vapor deposition polymerization (VDP) that is mainly used to the conducting polymers is introduced to form the gate dielectric. This method is appropriate to mass production in various end-user applications, for example, flat panel displays, because it has the advantages of shadow mask patterning and in-situ dry process with flexible low-cost large area displays. Also we fabricated four by four active pixels with all-organic thin-film transistors and phosphorescent organic light emitting devices.

  • PDF

장간유리애자 파손시 절연파괴 특성 (The Electrical Breakdown Characteristics of Broken Toughened Glass Stem Insulator)

  • 정종욱;정진수;김영석
    • 전기학회논문지
    • /
    • 제57권8호
    • /
    • pp.1398-1406
    • /
    • 2008
  • This paper describes the electrical breakdown characteristics of broken toughened glass stem insulators by comparing with those of sound ones. The broken toughened glass stem insulators were taken from the electric railway field. According to the international standards, the sound and broken toughened glass stem insulators were tested in electrical strength. In the test, the power frequency voltage and the impulse voltage with a standard waveform were applied to the insulators. The power frequency voltage tests were carried out under both dry and wet condition and the impulse voltage tests under only dry condition. The acquired results were compared one another and discussed in electrical breakdown characteristic by analyzing the flashover progress pictures. As a result, the electrical strength of the broken toughened glass insulators was acquired and the processes of the surface breakdown on the toughened glass insulators were confirmed.

지표면의 종류에 따른 오존의 건성침적속도에 관한 수치모의 (Numerical Simulation for Dry Deposition Velocity of Ozone According to Land-use Types)

  • 이화운;노순아;문난경
    • 한국대기환경학회지
    • /
    • 제19권5호
    • /
    • pp.583-594
    • /
    • 2003
  • Ozone is an important atmospheric pollutant that is occurred in tropospheric chemical process and it also affects the human health and plants. For a correct application of abatement strategies for ozone, it is necessary to understand the factors that control atmospheric ozone removal by dry deposition processes. The present study investigates the numerical simulation of the dry deposition velocity (V$^{d}$ ) obtained from PNU/DEM (Pusan National University Deposition Model). PNU/DEM includes seasonal categories, meteorological factors, surface properties and land-use types and proposes for an accurate numerical computation. And, this study examines the ability of the PNU/DEM to compute V$_{d}$ of ozone over water surfaces and evaluates PNU/DEM by comparing its estimated V$_{d}$ to past observed V$_{d}$ over water. The parametrization was found to yield V$_{d}$ values generally in good agreement with the observations for the deciduous forest and the coniferous forest. Ozone is removed slowly at wet surface or water due to its low water solubility. Therefore V$_{d}$ values over water were lower than Vd values over the other surfaces. Comparison of PNU/DEM simulated V d values to observations of ozone V$_{d}$ that have been reported in the literature implies that PNU/DEM produces realistic results.

N-chlorocarbamoylethyl화에 의한 sheet의 습윤강도 향상효과 (The Improvement of Wet Strength Properties of Sheet by N-Chlorocarbamoylethylation)

  • 정명준;조병묵;오정수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권3호
    • /
    • pp.63-72
    • /
    • 1999
  • 종이에 습윤강도를 부여하기 위하여 셀룰로오스 섬유를 chlorocarbamoylethyl화 한 후 이를 다시 N-chlorocarbamoylethyl화했다. Chlorocarbamoylethyl화는 알칼리 촉매하에서 아크릴 아마이드와의 반응에 의해서 제조되었으며, N-chlorocarbamoylelhyl 화는 차아염소산나트륨 첨가에 의해서 제조되었다. carbamoylelhyl 화에서는 NaOH의 농도와 온도 그리고 아크릴아마이드의 첨가량이 중요한 인자로 작용했으며, carbamoylelhyl화의 초기반응에서는 $40^{\circ}C$온도에서 그리고 알칼리와 아크랄아마이드의 첨가랑이 증가할수록 더 높은 치환도가 나타났다. N-chlorocarbamoylelhyl에 의한 가장 높은 습윤강도는 치환도 0.06에서 sheet의 건조강도에 85%에 해당하는 강도를 나타냈으며, 이를 주사전자현미경을 이용하여 N-chlorocarbamoylethyl sheel의 파단면에서 섬유간 컬합력의 증가로 인한 섬유의 절단을 관찰 할 수 있었다. 그리고, N-chlorocarbamoylelhyl sheet의 재활용을 위하여 습윤강도를 저하시키는데는 차아염소산나트륨이 효과적인 것으로 나타났다.

  • PDF

폐기물 재활용을 위한 사용후핵연료 처리기술 (Spent Fuel Processing Technologies for Waste Recycling)

  • 박병흥;김기섭
    • 융복합기술연구소 논문집
    • /
    • 제2권1호
    • /
    • pp.7-12
    • /
    • 2012
  • Spent fuels are discharged from nuclear reactors as a result of power generations. The spent fuels would be considered as a useful resources because the main constituent is uranium and some other actinides are included in them. In order to utilize the resources chemical processes should be developed to treat the spent fuels and obtain uranium and other actinides to be fueled in a fast reactor. The technologies are categorized into wet and dry processes. In this study, the current status of such technologies is summarized to give a insight and a deep understanding on nuclear fuel cycles.

  • PDF

Development of dry milling suitable rice cultivar to invigorate rice processing products

  • Jeung, Ji-Ung
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.10-10
    • /
    • 2017
  • Rice consumption has been continuously decreasing as the eating habits of Koreans have become westernized and diversified. The per capita annual rice consumption in Korea has dropped sharply from 136.4 kg in 1970 to 61.9 kg in 2016. The Korean government, therefore, has been trying to promote rice consumption by invigorating the processed food industry using rice flour. To facilitate the market for processed rice foods, it is essential to develop proper milling technology in terms of flour particle size and damaged starch content to produce high quality rice flour at competitive cost. Dry milling and wet milling are the two major processes used to produce rice flour. Although the dry milling process is relatively simple with a lower production cost, damaged starch content increases because of the high grain hardness of rice. In wet milling, the quality of rice flour is improved by reducing flour particle size as well as damaged starch content through soaking procedures. However, the production costs are high because of the additional expenses associated with the disposal of waste water, sterilization and drying of the wet flour. Recently developed technologies such as jet milling and cryogenic milling also require expensive investment and production. Therefore, developing new rice cultivars with dry milling adaptability as well as good processing properties is an important goal of rice breeding in Korea. 'Suweon 542' is a floury endosperm mutant line derived from sodium azide treatment on a high-yield, early maturing, and non-glutinous japonica rice cultivar, 'Namil'. Compared with the wild type, after dry milling process, the grain hardness of 'Suweon 542' was significantly lower because of its round and loosely packed starch granules. Also, the flour of 'Suweon 542' had significantly smaller particles and less damaged starch than 'Namil' and other rice cultivars and its particle size distribution was similar to a commercial wheat cultivar. Recently, through collaborations with nine universities and food companies, a total of 21 kinds of processed prototypes, using the dry milling flour of 'Suweon 542', were evaluated. In the production of major rice processing products, there was no significant quality difference between the flours prepared by wet milling and dry milling. Although the amount of water added to the dough was slightly increased, it was confirmed that the recipe applying the wet flour could be used without significant change. To efficiently transfer the floury endosperm characteristics of 'Suweon 542' to other commercial rice cultivars, it is essential to develop DNA marker tightly linked to the target gene. Association analysis using 70 genome-wide SSR markers and 94 F2 plants derived from 'Suweon 542'/'Milyang 23' showed that markers on chromosome 5 explained a large portion of the variation in floury grains percentage (FGP). Further analysis with an increased number of SSR markers revealed that the floury endosperm of 'Suweon 542' was directed by a major recessive locus, flo7(t), located in the 19.33-19.86 Mbp region of chromosome 5, with RM18639 explaining 92.2% of FGP variation in the F2 population. Through further physical mapping, a co-segregate and co-dominant DNA marker with the locus, flo7(t) was successfully developed, by which, thereby, breeding efficiency of rice cultivars having proper dry milling adaptability with high yield potential or useful functional materials would be improved. 'Suweon 542' maintained the early maturity of the wild type, Namil, which can be used in rice-wheat double cropping systems in Korea not only for improved arable land but also for sharing flour production facilities. In addition to the high susceptibility against major rice diseases, nevertheless, another possible drawback of 'Suweon 542' is the high rate of viviparous under prolonged rainfall during the harvesting season. To overcome susceptibility and vivipary of 'Suweon 542', the progeny lines, derived from the crosses 'Suweon 542' and 'Jopyeong', an early maturing rice cultivar with multiple resistance against rice blast, bacterial blight, and rice strip virus, and 'Heugjinju', a anthocyanin pigment containing black rice cultivar, were intensively evaluated. As the outputs, three dry milling suitable rice elite lines, 'Jeonju614', 'Jeonju615', and 'Jeonju616' were developed.

  • PDF