• Title/Summary/Keyword: drug release rate

Search Result 296, Processing Time 0.021 seconds

Qunntitation of Fentanyl Remaining in Used Patches (Fentanyl Patch의 사용후 잔량분석)

  • Bae, Yang Soo;Ahn, Jung Soon;Choi, Kyung Eob
    • Korean Journal of Clinical Pharmacy
    • /
    • v.6 no.2
    • /
    • pp.24-27
    • /
    • 1996
  • In order to determine whether there was a clinically sufficient amount of drug remaining in used fentanyl patches, quantitative analysis of two different types of patches, each containing 2.5 mg (n=36) and 5 mg (n=20) was performed. After being used for approximately 72 hours by patients with cancer, each patch was put in the plastic bag and stored at $4^{\circ}C$ until analysis. Fentanyl remaining in patches was extracted with 50 ml methanol, diluted with water, and counted twice in a $\gamma-Counter$ (expressed as CPM). Patches that originally contained 2.5 mg and 5 mg of fentanyl were shown to have $0.48{\sim}1.86\;mg\;(mean:\;1.03\;mg,\;41.16\%)\;and\;0.37{\sim}3.95\;mg\;(mean:\;2.37\;mg,\;47.33\%)$ after use, respectively. A wide interpatient variability was observed in the rate of fentanyl release from patches although the application period was standardized to 72 hours. Since a significant amount of drug remained in the discarded patches, it is highly recommended that patients dispose used ones under supervision to prevent abuse or misuse of the narcotic drug.

  • PDF

Percutaneous Absorption Characteristics of Tacrine in Alzheimer-type Dementia Treatment (Alzheimer형 치매치료제인 Tacrine의 경피 투과 특성 연구)

  • Lee, Han-Seob
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.552-560
    • /
    • 2012
  • Drug delivery technologies are patent protected formulation technologies that modify drug release profile, absorption, distribution, and elimination for the benefit of improving product efficacy and safety, as well as patient convenience and compliance. The most commonly used transdermal system is the skin patch using various types of technologies. Compared with other method of dosage, it is possible to use for a long term. It is also possible to stop the drug dosage are stop if the drug dosage lead to side effect. Polysaccharide, such as karaya gum and locust bean gum(LBG)/water-soluble chitosan oligomer(WSCO) were selected as base materials of TDS. Also, these polymers were characterized in terms of enhancers, tacrine contents. Among these polysaccharide, the permeation rate of karaya gum matrix was fastest in tacrine such as lipophilic drug in vitro. We used glycerin, PEG 400, and PEG 800 as enhancers. Therefore, transdermal absorption of tacrine could be improved by changing vehicle composition or by using penetration enhancers. Especially it would be anticipated that the high permeation efficacy could be obtained by using vehicle that has enhancing effect for itself and by adding enhancers to it.

Formulation of Sustained Release Matrix Tablets Containing Ibudilast with Hydroxypropylmethylcellulose Phthalate and Ethylcellulose (히드록시프로필메칠셀룰로오스 프탈레이트 및 에칠셀룰로오스를 이용한 이부딜라스트 함유 서방성 매트릭스 정제의 개발)

  • Oh, Dong-Hoon;Rhee, Jong-Dal;Ryu, Dong-Sung;Jang, Ki-Young;Im, Jong-Seub;Sung, Jung-Hoon;Han, Myo-Jung;Kwon, Tae-Hyup;Yang, Ho-Joon;Park, Byung-Chul;Lee, Jong-Sook;Yong, Chul-Soon;Choi, Han-Gon
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.6
    • /
    • pp.355-358
    • /
    • 2007
  • To develop a sustained-release tablet which had the similar dissolution to commercial ibudilast-loaded sustained-release capsule, the tablets were prepared using hydroxypropylmethylcellulose phthalate (HPMCP), ethylcellulose (EC) and hydroxypropylcellulose (HPC), and dissolution test were carried out with paddle method in KP. The tablet prepared only with HPMCP and EC showed sno similar dissolution pattern to the commercial product. As the ratio of HPMCP/HPC in tablet decreased, the dissolution rate of drug decreased in pH 1.2 but increased in pH 6.8. Furthermore, an ibudilast-loaded sustained-release tablet composed of [ibudilast/EC/HPMCP/HPC (10/10/170/10 mg/tab)] gave similar dissolution to commercial product in pH 1.2 for 3 h and in pH 6.8 for 10 h. Thus, it could be a potential candidate for the substitute of commercial capsule.

PLGA particles and half-shells prepared by double emulsion method: characterization and release profiles of ranitidine (이중 유제 방법으로 제조된 PLGA 미립자들과 반구체:특성과 라니티딘(ranitidine)의 방출 양상)

  • Nam, Dae-Sik;Kim, Seong-Cheol;Kang, Soo-Yong;Odonchimeg, Munkhjargal;Shim, Young-Key;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.99-104
    • /
    • 2008
  • PLGA micro/nano particles encapsulating ranitidine as a hydrophilic model drug were prepared by the double-emulsion solvent evaporation method. Surface morphology investigation by scanning electron microscope (SEM) showed that the emulsification by sonication could produce nanoparticles, whereas microparticles were prepared using high speed homogenizer. Moreover, while nanohalf-shell structure instead of spherical nanoparticle could be produced by adding poloxamer into oil phase (MC) with PLGA 504H, the addition of poloxamer didn't change particle shape in case of PLGA 502H. On the other hand, microparticle with poloxamer had more surface pores than those without poloxamer. The size and polydispersity (PDI) of particles were determined by particle size analyzer. Effective diameters of particles were in the range of $400{\sim}800\;nm$ and $1200{\sim}3300\;nm$ in case of nanoparticles and microparticles, respectively. Encapsulation efficiencies were in the range of $1.2{\sim}2.9%$. The addition of poloxamer produced the particles with higher encapsulation efficiency. In vitro release study in phosphate buffer (pH 7.4) at $37^{\circ}C$ showed common large initial burst release. However, the relative slower release profile could be observed in case of microparticles. Poloxamer addition increased the release rate, which was thought to be related to the increased surface area of particles.

The Role of Adenosine Receptors on Acetylcholine Release in the Rat Striatum

  • Kim, Do-Kyung;Kim, Hyeon-A;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • As it has been reported that the depolarization induced acetylcholine (ACh) release is modulated by activation of presynaptic $A_1$ adenosine heteroreceptor and various evidence suggest that indicate the $A_2$ adenosine receptor is present in the striatum, this study was undertaken to delineate the role of adenosine receptors on the striatal ACh release. Slices from the rat striatum were equilibrated with $[^3H]$choline and then the release amount of the labelled product, $[^3H]$ACh, which was evoked by electrical stimulation (rectangular pulses, 3 Hz, 2 ms, 24 mA, $5\;Vcm^{-1}$, 2 min), was measured, and the influence of various agents on the evoked tritium outflow was investigated. And also, quantitative receptor autoradiography and drug-receptor binding assay were performed in order to confirm the presence and characteristics of $A_1$ and $A_2$ adenosine receptors in the rat striatum. Adenosine $(10{sim}100\;{mu}M)$ and $N^6$-cyclopentyladenosine (CPA, $1{sim}100\;{mu}M)$ decreased the $[^3H]$ACh release in a dose-dependent manner without changing the basal rate of release in the rat striatum. The reducing effects of ACh release by adenosine and CPA were abolished by 8-cyclopentyl-1,3-dipropy-Ixanthine (DPCPX, 2 ${mu}M$), a selective $A_1$, adenosine receptor antagonist, treatment. The effect of adenosine was potentiated markedly by 3,7-dimethyl-1-propargylxanthine (DMPX, 10 ${mu}M$), a specific $A_2$ adenosine receptor antagonist. 2-P-(2-carboxyethyl)phenethylamimo-5'-N- ethylcarboxamidoadenosine hydrochloride (CGS-21680C), in concentrations ranging from 0.01 to 10 ${mu}M$, a recently introduced potent $A_2$ adenosine receptor agonist, increased the $[^3H]$ACh release in a dose related fashion without changing the basal rate of release. These effects were completely abolished by DMPX $(10\;{mu}M)$. In autoradiograrhy experiments, $[^3H]$2-chloro-$N^6$-cyclopentyladenosine ($[^3H]$ CCPA) bindings were highly localized in the hippocampus and the cerebral cortex. Additionally, lower levels of binding were found in the striatum. However, $[^3H]$CGS-21680C bindings were highly localized in the striatal region with the greatest density of binding found in the caudate nucleus and putamen. Lower levels of binding were also found in the nucleus accumbens and olfactory tubercle. In drug-receptor binding assay, binding of $[^3H]$ CCPA to $A_1$ adenosine receptors of rat striatal membranes was inhibited by CPA ($K_i$ = 1.6 nM) and N-ethylcarboxamidoadenosine (NECA, $K_i$ = 12.9 nM), but not by CGS-21680C ($K_i$ = 2609.2 nM) and DMPX ($K_i$ = 19,386 nM). In contrast, $[^3H]$CGS-21680C binding to $A_2$ denosine receptors was inhibited by CGS-21680C ($K_i$ = 47.6 nM) and NECA ($K_i$ = 44.9 nM), but not by CPA ($K_i$ = 2099.2 nM) and DPCPX ($K_i$ = 19,207 nM). The results presented here suggest that both types of $A_1$ and $A_2$ adenosine heteroreceptors exist and play an important role in ACh release in the rat striatal cholinergic neurons.

  • PDF

Transdermal Delivery of Ethinylestradiol UsingEthylene-vinyl Acetate Membrane

  • Shin, Sang-Chul;Byun, Soo-Young
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.53-59
    • /
    • 1995
  • Ethinylestradiol (EE)-containing matrix was fabricated with ethylene-vinyl acetate(EVA) copolymer to control the release of the drug, Effect of addition of PEG 400 as receptor solution, the stripping of skin and Azone pretreatment on skin on the permeation of EE through the excised mouse skin was also studied. The permeation rate of EE through the excised mouse skin was affected by the PEG 400 volume fraction. The Azone pretreatment on skin didn't affect on the steady state flux, however, the lag time was shortened. The permeation rate of EE through the stripped skin was much larger than that through the whole skin. It showed that the stratum corneum acts as a barrier of skin permeation. The fact that there is little difference in EE permeation between the intact skin and the stripped skin with EVA membrane shows the permeation of EE through the mouse skin is mainly controlled by the membrane.

  • PDF

Preparation of Biodegradable Polymer Microparticles Containing 5-FU Using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 5-FU 함유 생분해성 고분자 미세입자 제조)

  • Jung, Ju-Hee;Jung, In-Il;Joo, Hyun-Jae;Shin, Jae-Ran;Lim, Gio-Bin;Ryu, Jong-Hoon
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.452-459
    • /
    • 2008
  • To obtain maximal efficacy with minimal systemic side-effects, many studies have been carried out to achieve the controlled release of 5-fluorouracil (5-FU). In this study, biodegradable poly(L-lactide) (L-PLA) microparticles containing 5-FU were prepared by a process, called aerosol solvent extraction system (ASES), utilizing supercritical carbon dioxide. The effects of various organic solvents, drug/polymer feeding ratio, polymer molecular weight, and blending with the same polymers with different molecular weights on the formation of 5-FU loaded microparticles were investigated under a predetermined operating condition from our previous study. The drug recovery, entrapment efficiency, and in vitro drug release kinetics were determined by HPLC assays. The drug recovery obtained from the ASES process was found to be very high, whereas the drug entrapment efficiency was considerably low in all the experiments due to the poor affinity between L-PLA and 5-FU. These results indicated that the precipitation rate of L-PLA might be quite different from that of 5-FU so that there was little chance to form 5-FU loaded L-PLA microparticles.

Skin Permeability of piroxicam Gel by Phonophoretic Transdermal Drug Delivery (음파영동 경피약물수송에 의한 Piroxicam Gel의 경피투과)

  • Choi Suk-Joo;Oh Myung-Hwa;Kim Tae-Youl
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.4
    • /
    • pp.147-162
    • /
    • 2002
  • Transdermal permeation enhancer has been used to increased skin absorption. External control of drug release and skin absorption can also be achieved by iontophoresis or phonophoresis. However, because several problems with iontophoresis are that it has a risk to skin damage because of the change of pH and the increase of current density in applying it and that it can be applied only in the form of water solution, This study is to enhance drug permeation via skin following application of ultrasound. For this goal, in gel containing piroxicam, the degree of skin permeation in vitro and anti-inflammatory effect in in vivo were investigated. Permeation study using hairless mouse skin was performed at 37 $^{\circ}C$ using buffer saline as the receptor solution. The amount of piroxicam were quantified using a HPLC system consisting of solvent delivery system. Following adoption of ultrasound 1 MHZ, it showed relatively high permeation rate where it was compared with non treated by ultrasound. The influence of duty cycle having an effect on skin permeation rate was slight higher in the case of using pulsed mode. Skin permeation increase attended by intensity of ultrasound, the permeation of trice was accelerated at 2.0 W/$cm^{2}$ than 1.0 W/$cm^{2}$. The skin permeation of piroxicam was substantially influenced by ultrasound. Anti-inflammatory effects were determined using carrageenan-induced paw swelling method in SD rat. Paw swelling tests showed that pulsed phonophoresis group was more effective than control group and only gel application group. The conclusion of phonophoresis was found to improve significantly the skin permeation in vitro and the anti-inflammatory effect in vivo.

  • PDF

Preparation and Characterization of Deoxycholic Acid-Conjugated Low Molecular Weight Water-Soluble Chitosan Nanoparticles for Hydrophobic Antifungal Agent Carrier (소수성 항진균제 전달체로 응용하기 위한 데옥시콜릭산이 결합된 저분자량 수용성 키토산 나노입자의 제조와 특성)

  • Choi, Chang-Yong;Jung, Hyun;Nam, Joung-Pyo;Park, Yoon-Kyung;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.389-395
    • /
    • 2009
  • To develop the carrier of hydrophobic antifungal agents based on low molecular weight water-soluble chitosan (LMWSC), LMWSC was chemically modified with deoxycholic acid (DA) which is one of the bile acid as a hydrophobic group. The nanoparticles (WSCDA) using DA conjugated LMWSC were characterized using dynamic light scattering (DLS) and transmittance electron microscope (TEM). The particle size of WSCDA ranged from 250 to 350 nm and increased with the number of DA substitution. The loaded itraconazole as an antifungal agent WSCDA nanoparticles (WSCDA-ITCN) were prepared by solvent evaporation method. The drug content and the loading efficiency were investigated approximately $9{\sim}10%$ and $61{\sim}68%$ by UV spectrophotometer, respectively. The release of drug from nanoparticles was slow and showed sustained release characteristics. Based on the results of release study that the higher DA contents in WSCDA, the slower the releasing rate, the WSCDA-ITCN could be used as an excellent antifungal agent.

Synthesis, Characterization and in vitro Anti-Tumoral Evaluation of Erlotinib-PCEC Nanoparticles

  • Barghi, Leila;Asgari, Davoud;Barar, Jaleh;Nakhlband, Aylar;Valizadeh, Hadi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10281-10287
    • /
    • 2015
  • Background: Development of a nanosized polymeric delivery system for erlotinib was the main objective of this research. Materials and Methods: Poly caprolactone-polyethylene glycol-polycaprolactone (PCEC) copolymers with different compositions were synthesized via ring opening polymerization. Formation of triblock copolymers was confirmed by HNMR as well as FT-IR. Erlotinib loaded nanoparticles were prepared by means of synthesized copolymers with solvent displacement method. Results: Physicochemical properties of obtained polymeric nanoparticles were dependent on composition of used copolymers. Size of particles was decreased with decreasing the PCL/PEG molar ratio in used copolymers. Encapsulation efficiency of prepared formulations was declined by decreasing their particle size. Drug release behavior from the prepared nanoparticles exhibited a sustained pattern without a burst release. From the release profiles, it can be found that erlotinib release rate from polymeric nanoparticles is decreased by increase of CL/PEG molar ratio of prepared block copolymers. Based on MTT assay results, cell growth inhibition of erlotinib has a dose and time dependent pattern. After 72 hours of exposure, the 50% inhibitory concentration (IC50) of erlotinib hydrochloride was appeared to be $14.8{\mu}M$. Conclusions: From the obtained results, it can be concluded that the prepared PCEC nanoparticles in this study might have the potential to be considered as delivery system for erlotinib.