• Title/Summary/Keyword: drug release rate

Search Result 297, Processing Time 0.029 seconds

BCNU Release Behaviour from BCNU/PLGA Wafer Prepared by Vacuum Drying Method (진공 건조법에 의해 제조된 BCNU/PLGA웨이퍼의 BCNU 방출거동)

  • Park, Jung-Soo;Shin, Joon-Hyun;Lee, Doo-Hee;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.201-205
    • /
    • 2007
  • Biodegradable polymers such as polylactide, polyglycolide and poly (lactide- co-glycolide) (PLGA) have been extensively investigated because of easily controlled drug release rate, completely degradable materials without the toxic by-product, and good biocompatibility. But, according to the bulk erosion property of PLGA in vitro test, it had the disadvantage that first-order release reduced releasing amount slowly after excessive initial burst. In this study we used PLGA powder obtained through recrystallization to revise bulk erosion property of PLGA. The PLGA used in this study was prepared by vacuum drying method and to estimate release profiles of BCNU loaded PLGA wafer. We also evaluated the release profile of drug with the water soluble additive. It was found that the drug loaded PLGA recrystallized by vacuum drying method exhibited the initial burst and the constant rate of drug release compared to that prepared by a conventional method.

Controlled Rrelease of Indomethacin using Biodegradable Polymer Microspheres (생분해성 고분자 미세구를 이용한 indomethacin의 방출제어)

  • Lim, Seung;Lee, Ki-Young;Lee, Moo-Sung;Choi, Chang-Nam;Kim, Young-Dae
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.505-510
    • /
    • 2001
  • The preparation, characterization and drug release behaviour of drug(indomethacin) loaded Poly(L-lactic acid)(PLA), tarmarind acetate and levan acetate mircospheres were investigated. Hydrophobic tarmarind acetate and levan acetate were prepared by chemical modification of hydrophilic tarmaried gum and levan and microspheres were made by a solvent evaporation method. In the case of poly(L-lactic acid) microspheres, drug release rate was effected by polymer-drug ratios and drum release was sustained by increasing of polymer content. The yield of microspheres were effected by many factors and the mean size was below 1 $\mu$m, The IND release profiles from tarmarind acetate and levan acetate micropheres were more slightly less than ploy(L-lactic acid) microspheres.

  • PDF

Characterization and Controlled Release of Solid Dispersed Sibutramine (시부트라민 고체 분산체의 특성화 및 조절된 방출거동)

  • Park, Jung-Soo;Ku, Jeong;Lee, Jun-Hee;Kim, Yun-Tae;Park, Jong-Hak;Ahn, Sik-Il;Mo, Jong-Hyun;Lee, Hai-Bang;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.119-126
    • /
    • 2008
  • Solid dispersions of poorly water-soluble drug, sibutramine, were prepared with hydrophilic polymer, poly-N-vinylpyrrolidone (PVP), hydroxypropylmethylcellulose (HPMC) and organic acid, citric acid, to improve the solubility of drug. Physicochemical variation and shape of microsphere were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and Fourier-transform infrared spectroscopy (FT-IR). Microspheres containing additives showed more spherical shape than non additive microspheres. In vitro release behavior of microspheres presented at simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 6.8). The solid dispersion form transformed the drug into an amorphous state and dramatically improved its dissolution rate. These data suggest that the solid dispersion technique is an effective approach for developing the appetite depressant drug products and various pharmaceutical excipients are able to control the release behaviors.

Controlled Release of Cefadroxil from Chitosan Beads in Dogs (개에서 키토산 비드를 이용한 cefadroxil 방출제어)

  • Kim Dae-Keun;Park Seung-Chun;Kim Tae-Wan;Lee Keun-Woo;Oh Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.22 no.3
    • /
    • pp.175-180
    • /
    • 2005
  • The purpose of this study is to investigate the effects of formulation variables on the release of cefadroxil form chitosan beads, to optimize the preparation of chitosan beads loaded with the drug for controlled release, and to evaluate the drug release form chitosan beads in dogs. Chitosan beads were prepared with tripolyphosphate (TPP) by ionic cross-linking and those sizes were less than 1 mm in diameter. The release behaviour of cefadroxil was affected various factors. As pH of TPP solutions decreased, the entrapment efficiency of cefadroxil increased, whereas the release of cefadroxil decreased. The release rate of cefadroxil form chitosan beads decreaed with the increased TPP solution concentration. When cross-linking time increased, the release of the drug from chitosan beads decreased. The cefadroxil loaded beads were implanted to 4 mixed breed dogs. The concentration of cefadroxil in sera due to chitosan beads implanted with 50 mg/kg body weight of beads was sustained more than 1 ug/ml for the whole 7 days period. Therefore, the cefadroxil loaded beads can be used successfully in pyoderma of dogs. These results indicate that chitosan beads may become a potential delivery system to control the release of drug.

Pharmaceutical Studies on Chitosan Matrix: Controlled release of aspirin from chitosan device

  • Lee, Chi-Young;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.88-93
    • /
    • 1987
  • Chitosan ($\beta$-D-glucosaminan) is chemically prepared from chitin (N-acetyl-$\beta$- D-glucosaminan) which is an unutilized natural resource. We now report on the suitability of the chitosan matrix for use as vehicles for the controlled release of drugs. Salicylic acid and aspirin were used as model drugs in this study. The permeation of salicylic acid in the chitosan membranes was determined in a glass diffusion cell with two compartments of equal volume. Drug release studies on the devices were conducted in a beaker containing 5% sodium hydroxide solution. Partition coefficient (Kd) value for acetate membrane (472) is much greater than that for fluoro-perchlorate chitosan membrane (282). Higher Kd value for acetate chitosan membrane appears to be inconsisstent with the bulk salicylic acid concentration. The permeability constants of fluoro-perchlorate and acetate chisotan membranes for salicylic acid were 3.139 ${\times}10^{-7}cm^2$ min up to 60 min and that of 30% aspirin in the devices was 4.739${\times}10^{-7}cm^2$sec upto 60 min. As the loading dose of aspirin in a chitosan device increased, water up-take of chitosan device increased, but in case of salicylic acid it decreased. The release rate increased with increase in the molecular volume of the drugs. Thses result suggest that the release mechanism may be controlled mainly by diffusion through pores.

  • PDF

Dexamethasone Release from Glutaraldehyde Cross-Linked Chitosan Microspheres: In Vitro/In Vivo Studies and Non-Clinical Parameters Response in Rat Arthritic Model

  • Dhanaraju, Magharla Dasaratha;Elizabeth, Sheela;Poovi, Ganesan
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.5
    • /
    • pp.279-288
    • /
    • 2011
  • The Dexamethasone (DEX) loaded chitosan microspheres were prepared by thermal denaturation and chemical cross-linking method using a dierent concentration of glutaraldehyde as chemical cross-linking agent. The prepared microspheres were evaluated for the percentage of Drug Loading (DL), Encapsulation Efficiency (EE) and surface morphology by Scanning Electron Microscopy (SEM). DL and EE were found to be maximum range of 10.0 to 10.79 % and 58.19 to 64.73 % respectively. The SEM Photographs of the resultant microspheres exhibited fairly smooth surfaces and predominantly spherical in appearance. In addition, Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) shown that there was no interaction between the drug and polymer. In vitro and in vivo release studies revealed that the release of dexamethasone was sustained and extended up to 63 days and effectively controlled by the extent of cross-linking agent. Non-clinical parameters such as paw volume, hematological parameters like Erythrocyte Sedimentation Rate (ESR), Paced Cell Volume (PCV), Total Leucocytes Count (TLC), Hemoglobin (Hb), Differential Cell Count (DCC) were investigated in Fruend's Complete Adjuvant (FCA) induced arthritic rats. Radiology and histopathological studies were also performed in order to evaluate the therapeutic efficacy of the DEX-loaded microspheres in extenuating the rat arthritic model.

Zero-order Delivery of Alfuzosin Hydrochloride with Hydrophilic Polymers

  • Park, Jun-Bom;Hwang, Chang-Hwan;Noh, Hyung-Gon;Chae, Yu-Byeong;Song, Jun-Woo;Kang, Chin-Yang
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.5
    • /
    • pp.285-289
    • /
    • 2010
  • Manufacturing a multi-layered tablet such as Xatral XL$^{(R)}$ is more complex and expensive than monolayered tablets, but mono-layered tablets may have less favorable release properties depending on the pharmacodynamics and pharmacokinetics of the active ingredient. We therefore sought to develop a monolayer tablet with a similar dissolution profile to the commercial alfuzosin sustained-release triple layered tablet (Xatral XL$^{(R)}$). We prepared four different mono-layered alfuzosin tablets with different concentrations of hydroxypropyl methycellulose and PVP K-90. Fomulation III with alfuzosion/mg-stearate/ HPMC/ PVP K-90 (10/5/110/95 mg/tab) has a similar dissolution rate to Xatral XL$^{(R)}$, with a similarity factor score of 81.4. However, the swelling and erosion rates of the two formulations were different, and NIR analysis showed differences in the mechanisms of drug release. Thus, although formulation III and Xatral XL$^{(R)}$ show similar dissolution rates, the mechanisms of drug release are different.

Preparation and in vitro Evaluation of a Buoyant Hydrogel Matrix with Hydroxypropylcellulose and Carbopol (히드록시프로필셀룰로오스와 카르보폴을 이용한 부유성 히드로겔 매트릭스의 제조 및 in Vitro 평가)

  • Kim, Sang-Hun;Lee, Min-Suk;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.2
    • /
    • pp.137-144
    • /
    • 1996
  • The study was carried out for the preparation and evaluation of a buoyant hydrogel matrix (BHM), which is buoyant in a neutral or in pH 2.0 buffer solution, by the aspects of buoyancy, swelling, and drug release. Physical mixtures of HPC and CP in various molar ratio were employed as a mucoadhesive polymer which swells and controls the rate of drug release. Anhydrous citric acid and sodium bicarbonate in the molar ratio of 1:3 were employed as effervescing agents which provide a buoyancy for the mucoadhesive polymeric matrix. The buoyancy in vitro was expressed as both floating time$(T_{fl})$ and surfing time$(T_{sf})$, which are the time required for floating from the bottom to the surface of the medium and the time to keep the floated state at the surface of medium during release studies, respectively. A close relationship was observed between the buoyancy and the amount of effervescing agent added. $T_{fl}$ of the buoyant hydrogel matrices were decreased to about 10 seconds linearly with increasing the amount of effervescing agent in the range of 5 to 15%. $T_{sf}$ of the buoyant hydrogel matrices were varied from 1 to 3 hr depending on the amount of effervescing agent. The swelling was observed by changes in diameter of the buoyant hydrogel matrices in distilled water or acidic buffer solution, resulted in dependences on pH and the amount of effervescing agents. The release of hydrochlorothiazide from the buoyant hydrogel matrices were followed by apparent zero-order kinetics, while the buoyant hydrogel matrices were floated at the surface and maintaining their swollen shapes.

  • PDF

Injectable Gel Type Formulation of Hydrated Egg Phosphatidylcholine and Hyaluronate for Local Drug Delivery

  • Kim, Sang-Gyun;Chung, Hesson;Lee, In-Hyun;Kang, Seung-Back;Kwon, Ick-Chan;Sung, Ha-Chin;Jeong, Seo-Young
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.165-172
    • /
    • 2002
  • Injectable gel composed of egg phosphatidylcholine (egg PC), hyaluronate (HA) and water was formulated for local drug delivery. The lamellar liquid crystalline structure of the egg PC/water system did not change by adding HA in the formulation. However, egg PC/HA/water gel was more resistant to erosion than the egg PC/water gel. The egg PC/HA/water and egg PC/water gels containing model drugs, tetracycline and sudan IV were prepared to perform in vitro and in vivo drug release experiments. In vitro release of tetracycline was sustained in the gel type formulations. The release rate of hydrophobic sudan IV was extremely slow. More than 99% of sudan IV remained inside the gel after 5 days. In vivo release of drugs from the air pouch model in Balb/c mice shows that lipophilic sudan IV remained for more than 10 days whereas tetracycline remained for 1 day in the pouch. The compatibility of the gels was also examined by histopathology. The gels did not cause any adverse inflammatory effect in the air pouch.

Controlled Release Behavior of Bioactive Molecules from Photo-Reactive Hyaluronic Acid-Alginate Scaffolds

  • Nam, Hye-Sung;An, Jeong-Ho;Chung, Dong-June;Kim, Ji-Heung;Chung, Chong-Pyoung
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.530-538
    • /
    • 2006
  • There are three important components in tissue engineering: the cells, signaling factors (cytokines and growth factors), and scaffolds. To obtain finely engineered tissue, all three components should perform their individual functions and be fully integrated with each other. For the past few years, we have studied the characteristics of photodimerizable HA (CHA)/alginate (CA) composite materials. CHA/CA complex hydrogels, which were irradiated under UV light and, then treated with calcium ions, were found to have good biocompatibility, mechanical properties and water resistance for implantable tissue scaffolds. In this study, we introduced a cell growth factor (basic fibroblast growth factor; bFGF) into the CHA/CA scaffolds and studied its release behavior. We also introduced tetracycline hydrochloride and flurbiprofen into the same scaffolds as model activation factors and evaluated their release behaviors from the scaffolds. The drug release rate from the materials was influenced by various parameters, such as the degree of crosslinking, the cross linker type, the physico-chemical properties of the drug, and the amount of the drug in the polymer. The results indicated that the negatively charged CHA/CA composite materials showed sustained release behavior and that HA has a particularly strong negative charge, making it attractive toward tetracycline hydrochloride and bFGF, but repulsive toward flurbiprofen.