• Title/Summary/Keyword: drug expression

Search Result 1,208, Processing Time 0.026 seconds

Anti-Inflammatory Effect of Ethanolic Extract from Polyopes affinis through Suppression of NF-κB and MAPK Activation in LPS-Stimulated RAW 264.7 Cells (LPS로 자극된 대식세포에서의 NF-κB와 MAPK 활성 조절을 통한 참까막살(Polyopes affinis) 에탄올 추출물의 항염증 효과)

  • Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Park, Sun-Hee;Park, So-Young;Choi, Hyeun-Deok;Choi, Jung-Su;Jang, Mi-Ran;Im, Moo-Hyeog;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.537-544
    • /
    • 2017
  • In this study, the anti-inflammatory effect of Polyopes affinis ethanol extract (PAEE) was investigated using LPS-stimulated RAW 264.7 cells and a croton oil-induced ICR mice model. Treatment with PAEE significantly reduced production of nitric oxide (NO) and pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor $(TNF)-{\alpha}$, and $IL-1{\beta}$] in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. PAEE treatment also reduced expression of inducible NO synthase, cyclooxygenase-2, nuclear $factor-{\kappa}B$, and mitogen-activated protein kinases in LPS-stimulated RAW 264.7 cells. In the croton oil-induced ear edema test, application of PAEE (10~250 mg/kg body weight) reduced ear edema in a dose-dependent manner, and PAEE treatment at 50 mg/kg body weight showed similar inhibitory effects compared with prednisolone (10 mg/kg body weight). Histological analysis revealed reduced dermal thickness and lower number of infiltrated mast cells. These results suggest that PAEE might be used as a promising anti-inflammatory agent for inhibition of LPS-induced inflammation and ear edema formation.

Gastrointestinal Stromal Tumor (GIST) of the Stomach: Clinicopathologic Analysis and Outcome (위에 발생한 위장관 간질성 종양의 임상병리학적 특성과 치료성적)

  • Ryu Je-Seock;Lee Sung-Ryul;Choi Sae-Byeol;Park Sung-Soo;Lee Ju-Han;Kim Seung-Joo;Kim Chong-Suk;Chae Yang-Seok;Mok Young-Jae
    • Journal of Gastric Cancer
    • /
    • v.5 no.1
    • /
    • pp.40-46
    • /
    • 2005
  • Purpose: Gastrointestinal stromal tumors (GISTs) are mesenchymal neoplasms of the gastrointestinal tract. GISTs are positive for the expression of c-Kit protein at immunohistochemistry, and their clinical presentations vary. This retrospective study was performed to evaluate the clincopathologic characteristics of GISTs and to define the prognostic factors. Materials and Methods: 40 patients who underwent a complete resection of a GIST during the period $1996\~2003$ at the Department of Surgery, Korea University College of Medicine, were studied. We divided them into low- and high-risk. groups by using tumor size and mitotic count: 23 cases were low risk, and 17 were high risk. Clinicopathologic features, immunohistochemical findings, and prognoses were compared between the low- and the high-risk groups. Results: The mean age of the 40 patients was $61.3\pm11.1$years, and the male-to-female ratio was 1:1.1. There was no significant difference in age and sex between the groups. A comparative analysis revealed tumor size, mitotic count, clinical symptoms, preoperative pathologic diagnosis, ulceration, and necrosis to be variables that had statistically significant differences between the high- and the low-risk groups. In the univariate analysis, tumor size, mitotic count, ulceration, necrosis, and abnormal endoscopic ultrasound findings were associated with disease-free survival, but in the multivariate analysis, mitotic activity was the only independent factor associated with disease-free survival. 8 patients had recurrences during the follow-up period, and four of them were treated with STI-571 (imatinib mesylate, $Gleevec^{(R)}$). The treated patients have survived until now; however, two of non-treated patients died from disease progression. Conclusion: Based on this study, tumor size, ulceration, and necrosis are significant factors affecting survival, and mitotic activity may be a useful prognostic marker. STI-571 may be used in an adjuvant setting because the drug has shown anticancer activity in patients with recurrence or metastasis.

  • PDF

Anti-diabetic effect and mechanism of Korean red ginseng extract in C57BL/KsJ db/db mice

  • Yuan, Hai-Dan;Shin, Eun-Jung;Chung, Sung-Hyun
    • Proceedings of the Ginseng society Conference
    • /
    • 2007.12a
    • /
    • pp.57-58
    • /
    • 2007
  • Purpose: Ginseng is a well-known medical plant used in traditional Oriental medicine. Korean red ginseng (KRG) has been known to have potent biological activities such as radical scavenging, vasodilating, anti-tumor and anti-diabetic activities. However, the mechanism of the beneficial effects of KRG on diabetes is yet to be elucidated. The present study was designed to investigate the anti-diabetic effect and mechanism of KRG extract in C57BL/KsJ db/db mice. Methods: The db/db mice were randomly divided into six groups: diabetic control group (DC), red ginseng extract low dose group (RGL, 100 mg/kg), red ginseng extract high dose group (RGH, 200 mg/kg), metformin group (MET, 300 mg/kg), glipizide group (GPZ, 15 mg/kg) and pioglitazone group (PIO, 30 mg/kg), and treated with drugs once per day for 10 weeks. During the experiment, body weight and blood glucose levels were measured once every week. At the end of treatment, we measured Hemoglobin A1c (HbA1c), blood glucose, insulin, triglyceride (TG), adiponectin, leptin, non-esterified fatty acid (NEFA). Morphological analyses of liver, pancreas and white adipose tissue were done by histological observation through hematoxylin-eosin staining. Pancreatic islet insulin and glucagon levels were detected by double-immunofluorescence staining. To elucidate an action of mechanism of KRG, DNA microarray analyses were performed, and western blot and RT-PCR were conducted for validation. Results: Compared to the DC group mice, body weight gain of PIO treated group mice showed 15.2% increase, but the other group mice did not showed significant differences. Compared to the DC group, fasting blood glucose levels were decreased by 19.8% in RGL, 18.3% in RGH, 67.7% in MET, 52.3% in GPZ, 56.9% in PIO-treated group. With decreased plasma glucose levels, the insulin resistance index of the RGL-treated group was reduced by 27.7% compared to the DC group. Insulin resistance values for positive drugs were all markedly decreased by 80.8%, 41.1% and 68.9%, compared to that of DC group. HbA1c levels in RGL, RGH, MET, GPZ and PIO-treated groups were also decreased by 11.0%, 6.4%, 18.9%, 16.1% and 27.9% compared to that of DC group, and these figure revealed a similar trend shown in plasma glucose levels. Plasma TG and NEFA levels were decreased by 18.8% and 16.8%, respectively, and plasma adiponectin and leptin levels were increased by 20.6% and 12.1%, respectively, in the RGL-treated group compared to those in DC group. Histological analysis of the liver of mice treated with KRG revealed a significantly decreased number of lipid droplets compared to the DC group. The control mice exhibited definitive loss and degeneration of islet, whereas mice treated with KRG preserved islet architecture. Compared to the DC group mice, KRG resulted in significant reduction of adipocytes. From the pancreatic islet double-immunofluorescence staining, we observed KRG has increased insulin production, but decreased glucagon production. KRG treatment resulted in stimulation of AMP-activated protein kinase (AMPK) phosphorylation in the db/db mice liver. To elucidate mechanism of action of KRG extract, microarray analysis was conducted in the liver tissue of mice treated with KRG extract, and results suggest that red ginseng affects on hepatic expression of genes responsible for glycolysis, gluconeogenesis and fatty acid oxidation. In summary, multiple administration of KRG showed the hypoglycemic activity and improved glucose tolerance. In addition, KRG increased glucose utilization and improved insulin sensitivity through inhibition of lipogenesis and activation of fatty acid $\beta$-oxidation in the liver tissue. In view of our present data, we may suggest that KRG could provide a solid basis for the development of new anti-diabetic drug.

  • PDF

Anti-inflammatory effects of Ishige sinicola ethanol extract in LPS-induced RAW 264.7 cell and mouse model (LPS로 유도된 RAW 264.7 Cell과 마우스 모델에 대한 넓패(Ishige sinicola) 에탄올 추출물의 항염증 효과)

  • Kim, Ji-Hye;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Park, Sun-Hee;Cho, Kwang-Su;Kim, Go-Eun;XU, Xiaotong;Lee, Da-Hye;Park, Ga-Ryeong;Ahn, Dong-Hyun
    • Food Science and Preservation
    • /
    • v.24 no.8
    • /
    • pp.1149-1157
    • /
    • 2017
  • Inflammation is the first response of the immune system to infection or irritation in our body. The use of medicinal plants has been widely applied as an alternative source for drug development. One of marine natural resources, the anti-inflammatory effect of Ishige sinicola ethanol extract (ISEE), was evaluated by using LPS-induced RAW 264.7 cell and mice model. As a result, the production of nitric oxide (NO) and pro-inflammatory cytokines (IL-6, IL-$1{\beta}$, TNF-${\alpha}$) were inhibited with increasing concentration of ISEE without any cytotoxicity. Furthermore, ISEE suppressed the expression of not only inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappa B (NF-${\kappa}B$) p65, and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase (JNK) in a dose-dependent manner. In mice ear edema test, the formation of edema was reduced at the highest dosage of ISEE and the reduction of the number of infiltrated mast cells was observed in histological analysis. These results indicate that ISEE has a potent anti-inflammatory activity and can be used as a pharmaceutical material for many kinds of inflammatory disease.

Curcumin-induced Cell Death of Human Lung Cancer Cells (Curcumin에 의해 유도되는 인간 폐암 세포주의 세포사멸)

  • Hwasin Lee;Bobae Park;Sun-Nyoung Yu;Ho-Yeon Jeon;Bu Kyung Kim;Ae-Li Kim;Dong Hyun Sohn;Ye-Rin Kim;Sang-Yull Lee;Dong-Seob Kim;Soon-Cheol Ahn
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.713-723
    • /
    • 2023
  • Lung cancer is a type of cancer that has the highest mortality rate. It is mainly classified into small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). Chemotherapy is used to treat lung cancer, but long-term treatment causes side effects and drug resistances. Curcumin is a bright yellow polyphenol extracted from the root of turmeric. It has biological activities, such as anti-oxidant, anti-cancer, and anti-inflammatory effects. In this study, we observed differential cell death in human lung cancer cells. Based on the results, curcumin at 10, 30, and 50 μM exhibited a dose-dependent inhibition on the cell survival of several lung cancer cells, with minor differential phenotypes. In addition, apoptosis, autophagy, and reactive oxygen species (ROS) regeneration were observed through flow cytometry. Curcumin dose-dependently increased these phenotypes in A549 (NSCLC) and DMS53 (SCLC), which were restored by corresponding inhibitors. Western blotting was performed to measure the level of expression of apoptosis- and autophagy-related proteins. The results indicate that Bax, PARP, pro-caspase-3, and Bcl-2 were dose-dependently regulated by curcumin, with seemingly higher Bax/Bcl-2 ratios in DMS53. In addition, autophagic proteins, p-AKT, p62, and LC3B, were dose-dependently regulated by curcumin. ROS inhibition by diphenyleneiodonium reduced the induction of apoptosis and autophagy generated by curcumin. Taken together, it is suggested that curcumin induces apoptosis and autophagy via ROS generation, leading to cell death, with minor differences between human lung cancer cells.

Literature Review on Applying Digital Therapeutic Art Therapy for Adolescent Substance Addiction Treatment (청소년 마약류 중독 치료를 위한 디지털치료제 예술치료 적용을 위한 문헌연구)

  • Jiwon Kim;Daniel H. Byun
    • Trans-
    • /
    • v.16
    • /
    • pp.1-31
    • /
    • 2024
  • The advent of digital media has facilitated easy access for adolescents to environments conducive to the purchase of narcotics. In particular, there's an increasing trend in the purchase and consumption of narcotics mediated through Social Network Services (SNS) and messenger services. Adolescents, sensitive to such environments, are at risk of experiencing neurological and mental health issues due to narcotic addiction, increasing their exposure to criminal activities, hence necessitating national-level management and support. Consequently, the quest for sustainable treatment methods for adolescents exposed to narcotics emerges as a critical challenge. In the context of high relapse rates in narcotic addiction, the necessity for cost-effective and user-friendly treatment programs is emphasized. This study conducts a literature review aimed at utilizing digital platforms to create an environment where adolescents can voluntarily participate, focusing on the development of therapeutic content through art. Specifically, it reviews societal perceptions and treatment statuses of adolescent drug addiction, analyzes the impact of narcotic addiction on adolescent brain activity and cognitive function degradation, and explores approaches for developing digital therapeutics to promote the rehabilitation of the addicted brain through analysis of precedential case studies. Moreover, the study investigates the benefits that the integration of digital therapeutic approaches and art therapy can provide in the treatment process and proposes the possibility of enhancing therapeutic effects through various treatment programs such as drama therapy, music therapy, and art therapy. The application of art therapy methods is anticipated to offer positive effects in terms of tool expansion, diversification of expression, data acquisition, and motivation. Through such approaches, an enhancement in the effectiveness of treatments for adolescent narcotic addiction is anticipated. Overall, this study undertakes foundational research for the development of digital therapeutics and related applications, offering economically viable and sustainable treatment options in consideration of the societal context of adolescent narcotic addiction.

Comparison of the Uptakes of Tc-99m MIBI and Tc-99m Tetrofosmin in A549, an MRP-expressing Cancer Cell, In Vitro and In Vivo (MRP발현 인체 비소세포 폐암 A549에서 Tc-99m MIBI와 Tc-99m Tetrofosmin섭취의 비교)

  • Yoo, Jeong-Ah;Jeong, Shin-Young;Seo, Myung-Rang;Bae, Jin-Ho;Ahn, Byeong-Cheol;Lee, Kyu-Bo;Choi, Sang-Woon;Lee, Byung-Ho;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.6
    • /
    • pp.382-392
    • /
    • 2003
  • Purpose: Uptakes of Tc-99m MIBI (MIBI) and Tc-99m tetrofosmin (tetrofosmin) in human non-small cell lung cancer A549, multidrug-resistance associated protein (MRP) expressing cell, were investigated in vitro and in vivo. Materials and Methods: Western blot analysis and immunohistochemistry were used for detection of MRP in A549 cells with anti-MRPr1 antibody. Cellular uptakes of two tracers were evaluated at $100{\mu}M$ of verapamil (Vrp), $50{\mu}M$ of cyclosporin A (CsA) and $25{\mu}M$ of butoxysulfoximide (BSO) after incubation with MIBI and tetrofosmin for 30 and 50 min at $37^{\circ}C$, using single cell suspensions at $1{\times}10^6cells/ml$. Radioactivities in supernatants and pellets were measured with gamma well counter. A549 cells were inoculated in each flanks of 24 nude mice. Group 1 (Gr1) and Gr3 mice were treated with only MIBI or tetrofosmin, and Gr2 and Gr4 mice were treated with 70mg/kg of CsA i.p. for 1 hour before injection of 370KBq of MIBI or tetrofosmin. Mice were sacrificed at 10, 60 and 240 min. Radioactivities of organs and tumors were expressed as percentage injected dose per gram of tissue (%ID/gm). Results: Western blot analysis of the A549 cells detected expression of MRPr1 (190 kDa) and immunohistochemical staining of tumor tissue for MRPr1 revealed brownish staining in cell membrane but not P-gp. Upon incubating A549 cells for 60 min with MIBI and tetrofosmin, cellular uptake of MIBI was higher than that of tetrofosmin. Coincubation with modulators resulted in an increase in cellular uptakes of MIBI and tetrofosmin. Percentage increase of MIBI was higher than that of tetrofosmin with Vrp by 623% and 427%, CsA by 753% and 629% and BSO by 219% and 140%, respectively. There was no significant difference in tumoral uptakes of MIBI and tetrofosmin between Gr1 and Gr3. Percentage increases in MIBI (114% at 10 min, 257% at 60 min, 396% at 240 min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively higher by the time up to 240 min with CsA. Conclusion: These results indicate that MIBI and tetrofosmin are suitable tracers for imaging MRP-mediated drug resistance in A549 tumors. MIBI may be a better tracer than tetrofosmin for evaluating MRP reversal effect of modulators.

Effect of Verapamil on Cellular Uptake of Tc-99m MIBI and Tetrofosmin on Several Cancer Cells (수종의 암세포에서 Verapamil이 Tc-99m MIBI와 Tetrofosmin의 섭취에 미치는 영향)

  • Kim, Dae-Hyun;Yoo, Jung-Ah;Suh, Myung-Rang;Bae, Jin-Ho;Jeong, Shin-Young;Ahn, Byeong-Cheol;Lee, Kyu-Bo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.85-98
    • /
    • 2004
  • Purpose: Cellular uptake of $^{99}mTc$-sestamibi (MIBI) and $^{99}mTc$-tetrofosmin (TF) is low in cancer cells expressing multidrug resistance(MDR) by p-glycoprotein(Pgp) or multidrug related protein(MRP). Verapamil is known to increase cellular uptake of MIBI in MDR cancer cells, but is recently reported to have different effects on tracer uptake in certain cancer cells. This study was prepared to evaluate effects of verapamil on cellular uptake of MIBI and TF in several cancer cells. Materials and Methods: Celluar uptakes of Tc-99m MIBI and TF were measured in erythroleukermia K562 cell, breast cancer MCF7 cell, and human ovarian cancer SK-OV-3 cells, and data were compared with those of doxorubicin-resistant K562(Ad) cells. RT-PCR and Western blot analysis were used for the detection of mdr1 mRNA and Pgp expression, and to observe changes in isotypes of PKC enzyme. Effects of verapamil on MIBI and TF uptake were evaluated at different concentrations upto $200{\mu}M\;at\;1{\times}10^6\;cells/ml\;at\;37^{\circ}C$. Radioactivity in supernatant and pellet was measured with gamma counter to calculate cellular uptake ratio. Toxicity of verapamil was measured with MTT assay. Results: Cellular uptakes of MIBI and TF were increased by time in four cancer cells studied. Co-incubation with verapamil resulted in an increase in uptake of MIBI and TF in K562(Adr) cell at a concentration of $100{\mu}M$ and the maximal increase at $50{\mu}M$ was 10-times to baseline. In contrast, uptakes of MIBI and TF in K562, MCF7, SK-OV3 cells were decreased with verapamil treatment at a concentration over $1{\mu}M$. With a concentration of $200{\mu}M$ verapamil, MIBI and TF uptakes un K562 cells were decreased to 1.5 % and 2.7% of those without verapamil, respectively. Cellular uptakes of MIBI and TF in MCF7 and SK-OV-3 cells were not changed with $10{\mu}M$, but were also decreased with verapamil higher than $10{\mu}M$, resulting 40% and 5% of baseline at $50{\mu}M$. MTT assay of four cells revealed that K562, MCF7, SK-OV3 were not damaged with verapamil at $200{\mu}M$. Conclusion: Although verapamil increases uptake of MIBI and TF in MDR cancer cells, cellular uptakes were further decreased with verapamil in certain cancer cells, which is not related to cytotoxicity of drug. These results suggest that cellular uptakes of both tracers might differ among different cells, and interpretation of changes in tracer uptake with verapamil in vitro should be different when different cell lines are used.