Effect of Verapamil on Cellular Uptake of Tc-99m MIBI and Tetrofosmin on Several Cancer Cells

수종의 암세포에서 Verapamil이 Tc-99m MIBI와 Tetrofosmin의 섭취에 미치는 영향

  • Kim, Dae-Hyun (Department of Nuclear Medicine, Kyungpook National University School of Medicine) ;
  • Yoo, Jung-Ah (Department of Nuclear Medicine, Kyungpook National University School of Medicine) ;
  • Suh, Myung-Rang (Department of Nuclear Medicine, Kyungpook National University School of Medicine) ;
  • Bae, Jin-Ho (Department of Nuclear Medicine, Kyungpook National University School of Medicine) ;
  • Jeong, Shin-Young (Department of Nuclear Medicine, Kyungpook National University School of Medicine) ;
  • Ahn, Byeong-Cheol (Department of Nuclear Medicine, Kyungpook National University School of Medicine) ;
  • Lee, Kyu-Bo (Department of Nuclear Medicine, Kyungpook National University School of Medicine) ;
  • Lee, Jae-Tae (Department of Nuclear Medicine, Kyungpook National University School of Medicine)
  • 김대현 (경북대학교 의과대학 핵의학교실) ;
  • 유정아 (경북대학교 의과대학 핵의학교실) ;
  • 서명랑 (경북대학교 의과대학 핵의학교실) ;
  • 배진호 (경북대학교 의과대학 핵의학교실) ;
  • 정신영 (경북대학교 의과대학 핵의학교실) ;
  • 안병철 (경북대학교 의과대학 핵의학교실) ;
  • 이규보 (경북대학교 의과대학 핵의학교실) ;
  • 이재태 (경북대학교 의과대학 핵의학교실)
  • Published : 2004.02.28

Abstract

Purpose: Cellular uptake of $^{99}mTc$-sestamibi (MIBI) and $^{99}mTc$-tetrofosmin (TF) is low in cancer cells expressing multidrug resistance(MDR) by p-glycoprotein(Pgp) or multidrug related protein(MRP). Verapamil is known to increase cellular uptake of MIBI in MDR cancer cells, but is recently reported to have different effects on tracer uptake in certain cancer cells. This study was prepared to evaluate effects of verapamil on cellular uptake of MIBI and TF in several cancer cells. Materials and Methods: Celluar uptakes of Tc-99m MIBI and TF were measured in erythroleukermia K562 cell, breast cancer MCF7 cell, and human ovarian cancer SK-OV-3 cells, and data were compared with those of doxorubicin-resistant K562(Ad) cells. RT-PCR and Western blot analysis were used for the detection of mdr1 mRNA and Pgp expression, and to observe changes in isotypes of PKC enzyme. Effects of verapamil on MIBI and TF uptake were evaluated at different concentrations upto $200{\mu}M\;at\;1{\times}10^6\;cells/ml\;at\;37^{\circ}C$. Radioactivity in supernatant and pellet was measured with gamma counter to calculate cellular uptake ratio. Toxicity of verapamil was measured with MTT assay. Results: Cellular uptakes of MIBI and TF were increased by time in four cancer cells studied. Co-incubation with verapamil resulted in an increase in uptake of MIBI and TF in K562(Adr) cell at a concentration of $100{\mu}M$ and the maximal increase at $50{\mu}M$ was 10-times to baseline. In contrast, uptakes of MIBI and TF in K562, MCF7, SK-OV3 cells were decreased with verapamil treatment at a concentration over $1{\mu}M$. With a concentration of $200{\mu}M$ verapamil, MIBI and TF uptakes un K562 cells were decreased to 1.5 % and 2.7% of those without verapamil, respectively. Cellular uptakes of MIBI and TF in MCF7 and SK-OV-3 cells were not changed with $10{\mu}M$, but were also decreased with verapamil higher than $10{\mu}M$, resulting 40% and 5% of baseline at $50{\mu}M$. MTT assay of four cells revealed that K562, MCF7, SK-OV3 were not damaged with verapamil at $200{\mu}M$. Conclusion: Although verapamil increases uptake of MIBI and TF in MDR cancer cells, cellular uptakes were further decreased with verapamil in certain cancer cells, which is not related to cytotoxicity of drug. These results suggest that cellular uptakes of both tracers might differ among different cells, and interpretation of changes in tracer uptake with verapamil in vitro should be different when different cell lines are used.

목적: 다약제내성(MDR) 극복제 verapamil은 MDR이 발현된 암세포에서 Tc-99m MIBI(MIBI)와 tetrofosmin(TF)의 섭취를 증가시키는 것으로 알려져 있으나, 세포의 종류에 따라서는 MIBI와 TF의 섭취를 감소시킬 수 있다는 보고가 있다. 본 연구는 암세포의 종류에 따라 verpamile이 MIBI와 TF의 섭취에 미치는 영향이 세포에 따른 차이가 있는지를 알아보고, 이러한 차이가 세포독성이나 PKC효소의 발현에 따른 차이인가를 알아보았다. 방법: 백혈병세포 K562세포와 유방암세포 MCF7, 난소암세포 SK-OV-3 세포 및 MDR이 유발된 K562(Adr)세포를 배양하였다. 시험관에서 $1{\times}10^6\;cells/ml$ 농도의 single-cell suspension 상태로 분주하고 verapamil을 1, 10, 50, 100, $200{\mu}M$의 농도로 처리한 후 MIBI와 TF를 배양한 후, $37^{\circ}C$에서 1, 15, 30, 45, 60분 동안 반응시킨 후 pellet과 supernatant의 방사능 치를 감마계수기로 측정하여 투여한 방사능 치에 대한 세포내 섭취백분율로 표시하였다. Verapamil의 세포독성은 MTT assay로 측정하였고, 세포내의 PKC isotypes의 변화는 western blotting analysis로 평가하였다. 결과: 4종류의 세포 모두에서 MIBI와 TF의 섭취는 1, 15, 30, 45, 60분 배양 시간에 따라 증가하였다. verapamil을 처리시 다약제 내성이 유발된 K562(Adr)세포에서 $100{\mu}M$의 농도까지는 MIBI와 TF 섭취가 증가하였고, 최대 $10{\mu}M$에서 10배 증가하였다. 그러나 K562세포를 verapamil $1{\mu}M$로 처리하였을 때는 기저치와 유사하였으나, verapamil의 농도가 증가함에 따라 MIBI와 TF의 세포섭취는 모두 감소하였다. K562세포의 60분 MIBI 섭취율은 79%($10{\mu}M$), 47%($50{\mu}M$), 29%($100{\mu}M$), 1.5%($200{\mu}M$)로 verapamil의 용량이 증가함에 따라 감소하였으며, TF 섭취율도 84% ($10{\mu}M$), 60%($50{\mu}M$), 42%($100{\mu}M$), 2.7%($200{\mu}M$)로 감소하였다. MCF7, SK-OV-3세포에서는 verapamil $10{\mu}M$까지는 MIBI와 TF의 섭취가 기저치와 유사하거나 소량 증가하였으나 $50{\mu}M$이상의 용량에서는 감소하여 $100{\mu}M$에서는 각각 40%와 5%만 섭취되었다. MTT assay상 K562(Adr)세포에서는 verapamil $100{\mu}M$ 이상에서는 유의하게 낮았으나 다른 세포는 $200{\mu}M$까지에도 차이가 없었다. PKC 아형의 분석상 PKC $\varepsilon$이 K562(Adr)세포에서 많이 발현되었으나, K562와 K562(Adr)세포에서는 verapamil처리에 따른 PKC 아형의 변화는 없었다. 결론: Verapamil은 암세포의 종류에 따라 MIBI와 TF의 섭취를 감소시켰고, 고용량에는 MDR세포의 섭취도 감소시켰으며 이러한 현상은 세포독성 이나 PKC효소 아형과는 관련이 없었다. 그러므로 MDR의 진단시 verapamil을 처치에 따른 MIBI와 TF의 섭취 정도를 기준으로 하는 경우에는, verapamil의 농도와 세포의 종류에 따라 현저한 차이가 있을 수 있다는 점을 생각하여야 한다.

Keywords

References

  1. Breuninger LM, Paul S, Gaughan K, Miki T, Chan A, Aaronson SA. Expression of multidrug resistance associated protein with increased drug efflux and altered intracellular drug distribution. Cancer Res 1995;55:5342-7
  2. Hendrikse NH, Franssen EJF, van der Graaf WTA, Vaalburg W, de Vries EGE. Visualization of multidrug resistance in vivo. Eur J Nucl Med 1999;26:283-93 https://doi.org/10.1007/s002590050390
  3. Rao VV, Chiu ML, Kronauge JF, Piwnica-Worms D. Expression of recombinant human multidrug resistance P-glycoprotein in insect cells confers decreased accumulation of technetium-99m-sestamibi. J Nucl Med 1994;35:510-5
  4. Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM. Functional imaging of multidrug-resistant P-glycoprotein with an organotech-netium complex. Cancer Res 1993;53:977-84
  5. Lee J. Functional imaging of the multidrug resistance in vivo. Korean J Nucl Med 2001;35:66-75
  6. Rodrigues M, Kalinowska W, Zielinski C. Sinzinger H. Verapamil decreases accumulation of $^{99}Tc^m-MIBI and ^{99}Tc^m$-MIBI-tetrofosmin in human breast cancer and soft tissue sarcoma cell lines. Nucl Med Comm 2001;22:645-50 https://doi.org/10.1097/00006231-200106000-00007
  7. Zheng B, Chambers TC, Raynor RL, Markham PN, Gebel MW, Vogler WR, et al. Human leukemia K562 cell mutant (K562/OA200) selected for resistance to okadaic acid (protein phosphatase inhibitor) lacks protein kinase C-$\varepsilon$, exhibits multidrug resistance phenotype, and expresses drug pump P-glycoprotein. J Biol Chem 1994;269:12332-8.
  8. Hardy SP, Goodfellow HR, Valverde MA, Grill DR, Sepulveda V, Higgins CF. Protein kinase C-mediated phosphorylation of the human multidrug resistance P-glycoprotein regulates cell volume-activated chloride channels. EMBO J 1995;14:68-75
  9. Taki J, Sumiya H, Asada N, Ueda Y, Tsuchiya H, Tonami N. Assessment of P-glycoprotein in patients with malignant bone and soft-tissue tumors using technetium-99m-MIBI scintigraphy. J Nucl Med 1998;39:1179-84
  10. Kostakoglu L, Elahi N, Kiratli P, Ruacan S, Sayek I, Baltali E. Clinical validation of the influence of P-glycoprotein on technetium-99m-sestamibi uptake in malignant tumors. J Nucl Med 1997;38:1003-8
  11. Ballinger JR, Hua BW, Berry BW, Firby P, Boxen I. $^{99m}$Tc-sestamibi as an agent for imaging P-glycoprotein-mediated multi-drug resistance: in vitro and in vivo studies in a rat breast tumour cell line and its doxorubicin-resistant variant. Nucl Med Commun 1995;16:253-7 https://doi.org/10.1097/00006231-199504000-00156
  12. Kao CH, Ho YJ, Shen YY, Lee JK. Evaluation of chemotherapy response in patients with small cell lung cancer using technetium-99m-tetrofosmin. Anticancer Res 1999;19:2311-5
  13. Utsunomiya K, Ballinger JR, Piquette-Miller M, Rauth AM, Tang W, Su ZF, et al. Comparison of the accumulation and efflux kinetics of technetium-99m sestamibi and technetium-99m tetrofosmin in an MRP-expressing tumour cell line. Eur J Nucl Med 2000;27:1786-92 https://doi.org/10.1007/s002590000375
  14. Arbab AS, Koizumi K, Toyama K, Araki T. Uptake of technetium-99m-tetrofosmin, technetium-99m-MIBI and thallium-201 in tumor cell lines. J Nucl Med 1996;37:1551-6
  15. Rodrigues M, Chehne F, Kalinowska W, Berghammer P, Zielinki C, Sinzinger H. Uptake of $^{99m}Tc-MIBI and ^{99m}$Tc-tetrofosmin into malignant versus nonmalignant breast cell line. J Nucl Med 2000;41:1495-9
  16. Rodrigues M, Chehne F, Kalinowaka W, Zielinski C, Sinzinger H. Comparative $^{99m}Tc-MIBI, ^{99m}Tc-tetrofosmin and ^{99m}$Tc-furifosmin uptake in human soft tissue sarcoma cell lines. Eur J Nucl Med 2000;27:1839-43 https://doi.org/10.1007/s002590000369
  17. Yoo JA, Chung SY, Seo MR, Kwak DS, Ahn BC, Lee KB, et al. Comparison of uptakes of $^{99m}Tc-MIBI and ^{99m}$Tc-tetrofosmin in cancer cell lines expressing multidrug resistance. Korean J Nucl Med 2003;37:178-89
  18. Soderlund V, Larsson SA, Bauer HCF, Brosjo O, Larsson O, Jacobson H. Use of $^{99m}$Tc-MIBI scintigraphy in the evaluation of the response of osteosarcoma to chemotherapy. Eur J Nucl Med 1997;24:511-5
  19. Ballinger JR. Imaging multidrug resistance with radiolabeled substrates for P-glycoprotein and multidrug resistance protein. Cancer Biother Radiopharm 2001;16:1-7 https://doi.org/10.1089/108497801750095907
  20. Ding HJ, Shiau YC, Tsai SC, Wang JJ, Ho ST, Kao A. Uptake of $^{99m}Tc tetrofosmin in lymphoma cell lines: a comparative study with ^{99m}$Tc sestamibi. Appl Radiat Isot. 2002;56:853-6 https://doi.org/10.1016/S0969-8043(01)00277-9
  21. Sikik BI. Pharmacologic approaches to reversing multidrug resistance. Semin Hematol 1997;34:40-7
  22. Kim JK, Lee J, Lee BH, Choi SU, Lee SW, Chun KA, et al. Reversal of multidrug resistance with KR-30035: Evaluation with biodistribution of Tc-99m MIBI in nude mice bearing human tumor xenografts. Korean J Nucl Med 2001:35;168-84
  23. Chun KA, Lee J, Lee SW, Kang DY, Sohn SK, Lee JK, et al. Effect of multidrug resistance gene-1 (mdr1) overexpression on in-vitro uptake of $^{99m}$Tc-sestamibi in murine L1210 leukemia cells. Korean J Nucl Med 1999;33:152-62
  24. Piwnica-Worms D, Rao VV, Krounage JF, Croop JM. Characterization of multidrug resistance transport function with an organotechnetium cation. Biochemistry 1995;34:12210-20 https://doi.org/10.1021/bi00038a015
  25. Cordobes MD, Starzec A, Delmon-Moingeon L, Blanchot C, Kouyoumdjian JC, Prevost G, et al. Technetium-99m-sestamibi uptake by human benign and malignant breast tumor cells: correlation with mdr gene expression. J Nucl Med 1996;37:286-9
  26. Murray NR, Baumgardner GP, Burns DJ, Fields AP. Protein kinase C isotypes in human erythroleukemia (K562) cell proliferation and differentiation. J Biol Chem 1993;268:15847-53
  27. Abraham EH, Prat AG, Gerweck L, Seneveratne T, Arceci RJ, Krarmer R, et al. The multidrug resistance (mdr1) gene product functions as an ATP channel. Proc Natl Acad Sci U S A 1993;90:312-6 https://doi.org/10.1073/pnas.90.1.312
  28. Tunggal JK, Melo T, Ballinger JR, Tannock IF. The influence of expression of P-glycoprotein on the penetration of anticancer drugs through multicelluar layers. Int J Cancer 2000;86:101-7 https://doi.org/10.1002/(SICI)1097-0215(20000401)86:1<101::AID-IJC16>3.0.CO;2-I
  29. Del Vecchio S, Zannetti A, Aloj L, Caraco C, Ciarmiello A, Salvatore M. Inhibition of early $^{99m}$Tc-MIBI uptake by Bcl-2 anti-apoptotic protein overexpression in untreated breast carcinoma. Eur J Nucl Med Mol Imaging 2003;30:879-87 https://doi.org/10.1007/s00259-003-1161-x
  30. Cory S, Adams JM. The bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002;2:647-56 https://doi.org/10.1038/nrc883