• Title/Summary/Keyword: drought tolerance

Search Result 240, Processing Time 0.031 seconds

Molecular Identification and Fine Mapping of a Major Quantitative Trait Locus, OsGPq3 for Seed Low-Temperature Germinability in Rice

  • Nari Kim;Rahmatullah Jan;Jae-Ryoung Park;Saleem Asif;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.283-283
    • /
    • 2022
  • Abiotic stresses such as high/low temperature, drought, salinity, and submergence directly or indirectly influence the physiological status and molecular mechanisms of rice which badly affect yield. Especially, the low temperature causes harmful influences in the overall process of rice growth such as uneven germination and the establishment of seedlings, which has become one of the main limiting factors affecting rice production in the world. It is of great significance to find the candidate genes controlling low-temperature tolerance during seed germination and study their functions for breeding new rice cultivars with immense low-temperature tolerance during seed germination. In this study, 120 lines of Cheongcheong/Nagdong double haploid population were used for quantitative trait locus analysis of low-temperature germinability. The results showed significant difference in germination under low different temperature conditions. In total, 4 QTLs were detected on chromosome 3, 6, and 8. A total of 41 genes were identified from all the 4 QTLs, among them, 25 genes were selected by gene function annotation and further screened through quantitative real time polymerase chain reaction. Based on gene function annotation and level of expression under low-temperature, our study suggested OsGPq3 gene as a candidate gene controlling viviparous germination, ABA and GA signaling under low-temperature. This study will provide a theoretical basis for marker-assisted breeding.

  • PDF

Conflicting Physiological Characteristics and Aquaporin (JcPIP2) Expression of Jatropha (Jatropha curcas L.) as a Bio-energy Crop under Salt and Drought Stresses (바이오에너지 작물 소재로서 자트로파의 염과 가뭄 스트레스 하에서 상반되는 생리적 특성과 아쿠아포린(JcPIP2)의 발현)

  • Jang, Ha-Young;Lee, Ji-Eun;Jang, Young-Seok;Ahn, Sung-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.183-191
    • /
    • 2011
  • This study was undertaken to collect basic knowledge of Jatropha which is one of bio-energy crops, based on the understanding of physiological and molecular aspects under salt and drought conditions. The treatments were followed as: 100, 200 and 300 mM NaCl for salt stress and 5, 10, 20 and 30% PEG for drought stress for 8 days, respectively. Leaf growth, stomatal conductance, chlorophyll fluorescence and gene expression of aquaporin (JcPIP2) of Jatropha were investigated. From 2 days after treatments, plants treated with higher than 100 mM NaCl and 10% PEG respectively were significantly suppressed in leaf length, width, and stomatal conductance, but 5% PEG treatment showed that plant growth was improved more than control plant. Semi-quantitative RT-PCR analyses revealed that the JcPIP2 gene was expressed in root, stem, cotyledon and leaves. It was not detected in leaves at 200 and 300 mM NaCl treatments. However, transcripts of JcPIP2 were induced in roots and stems under salt and drought conditions compared to those of healthy plants. Therefore, it was concluded that JcPIP2 plays an important role in improving drought tolerance.

Application of Non-photochemical Quenching on Screening of Osmotic Tolerance in Soybean Plants (콩의 삼투 저항성 검정에 있어서 Non-photochemical quenching의 적용)

  • Park, Sei-Joon;Kim, Hyun-Hee;Ko, Tae-Seok;Shim, Myong-Yong;Yoo, Sung-Yung;Park, So-Hyun;Kim, Tae-Gyeong;Eom, Ki-Cheol;Hong, Sun-Hee;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.390-399
    • /
    • 2010
  • Non-photochemical quenching (NPQ) values for utilizing them to detect osmotic tolerance in plants were examined with two different soybean cultivars, an osmotic tolerant soybean (Shinpaldalkong 2) and a control soybean (Taekwangkong). Two different stresses were applied to the cultivars as the restricted irrigations of 200 and 50 ml water $pot^{-1}\;d^{-1}$ for 5 days for a control and a drought stress, respectively, and a sodium chloride solution of 200 mmol for 6 days for a salt stress. The intact leaves of the two cultivars after treatment were used to measure chlorophyll fluorescence parameters, maximum efficiencies of photosystem II photochemistry (Fv/Fm), efficiencies of photosystem II photochemistry (${\Phi}_{PSII}$), $CO_2$ assimilation rate ($P_N$), and NPQ. Leaf water potentials of the two cultivars decreased from - 0.2 to - 0.8MPa by a drought treatment and from - 0.7 to - 1.7MPa by a salt treatment. Leaf water content of Shinpaldalkong 2 after a salt treatment was less decreased than that of Taekwangkong. $F_v/F_m$ values of both cultivars were not changed, while ${\Phi}_{PSII}$ and $P_N$ were decreased proportionally to leaf water potential decrease. The response of NPQ was occurred in Shinpaldalkong 2 under the drought and salt stresses. With Taekwangkong cultivar, only drought stress referred NPQ response. The cultivar differences on chlorophyll fluorescence parameters were found in the relationships between ${\Phi}_{PSII}$ and $P_N$, and between NPQ and ${\Phi}_{PSII}$. Although the positive relationships between ${\Phi}_{PSII}$ and $P_N$ were established on all treatments of both cultivars, the decreasing rate of ${\Phi}_{PSII}$ to $P_N$ was smaller in Shinpaldalkong 2 than Taekwangkong. The NPQ was increased according to the decrease of ${\Phi}_{PSII}$ by osmotic treatments in Shinpaldalkong 2. The complementary relationships between NPQ and ${\Phi}_{PSII}$ were well maintained at all treatments in Shinpaldalkong 2, while these relationships were lost at a salt treatment in Taekwangkong. Taken together, the results suggest that analysis of complementary relationships between ${\Phi}_{PSII}$ and NPQ could be more valuable and applicable for determining osmotic tolerance than single analysis of each parameter such as $F_v/F_m$, ${\Phi}_{PSII}$ and NPQ.

Transgenic Plants with Enhanced Tolerance to Environmental Stress by Metabolic Engineering of Antioxidative Mechanism in Chloroplasts (엽록체 항산화기구 대사조절에 의한 환경스트레스 내성 식물)

  • Kwon Suk-Yoon;Lee Young-Pyo;Lim Soon;Lee Haeng-Soon;Kwak Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.151-159
    • /
    • 2005
  • Injury caused by reactive oxygen species (ROS), known as oxidative stress, is one of the major damaging factors in plants exposed to environmental stress. Chloroplasts are specially sensitive to damage by ROS because electrons that escape from the photosynthetic electron transfer system are able to react with relatively high concentration of $O_2$ in chloroplasts. To cope with oxidative stress, plants have evolved an efficient ROS-scavenging enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX), and low molecular weight antioxidants including ascorbate, glutathione and phenolic compounds. To maintain the productivity of plants under the stress condition, it is possible to fortify the antioxidative mechanisms in the chloroplasts by manipulating the antioxidation genes. A powerful gene expression system with an appropriate promoter is key requisite for excellent stress-tolerant plants. We developed a strong oxidative stress-inducible peroxidase (SWPA2) promoter from cultured cells of sweetpotato (Ipomoea batatas) as an industrial platform technology to develop transgenic plants with enhanced tolerance to environmental stress. Recently, in order to develop transgenic sweetpotato (tv. Yulmi) and potato (Solanum tuberosum L. cv. Atlantic and Superior) plants with enhanced tolerance to multiple stress, the genes of both CuZnSOD and APX were expressed in chloroplasts under the control of an SWPA2 promoter (referred to SSA plants). As expected, SSA sweetpotato and potato plants showed enhanced tolerance to methyl viologen-mediated oxidative stress. In addition, SSA plants showed enhanced tolerance to multiple stresses such as temperature stress, drought and sulphur dioxide. Our results strongly suggested that the rational manipulation of antioxidative mechanism in chloroplasts will be applicable to the development of all plant species with enhanced tolerance to multiple environmental stresses to contribute in solving the global food and environmental problems in the 21st century.

Overexpression of an oligopeptide transporter gene enhances heat tolerance in transgenic rice (Oligopeptide transporter 관여 유전자 도입 형질전환벼의 고온스트레스 내성 증진)

  • Jeong, Eun-Ju;Song, Jae-Young;Yu, Dal-A;Kim, Me-Sun;Jung, Yu-Jin;Kang, Kwon Kyoo;Park, Soo-Chul;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.296-302
    • /
    • 2017
  • Rice (Oryza sativa) cultivars show an impairment of growth and development in response to abiotic stresses such as drought, salinity, heat and cold at the early seedling stage. The tolerance to heat stress in plants has been genetically modulated by the overexpression of heat shock transcription factor genes or proteins. In addition to a high temperature-tolerance that has also been altered by elevating levels of osmolytes, increasing levels of cell detoxification enzymes and through altering membrane fluidity. To examine the heat tolerance in transgenic rice plants, three OsOPT10 overexpressing lines were characterized through a physiological analysis, which examined factors such as the electrolyte leakage (EL), soluble sugar and proline contents. We further functionally characterized the OsOPT10 gene and found that heat induced the expression of OsOPT10 and P5CS gene related proline biosynthesis. It has been suggested that the expression of OsOPT10 led to elevated heat tolerance in transgenic lines.

Construction of a Network Model to Reveal Genes Related to Salt Tolerance in Chinese Cabbage (배추 염 저항성 관련 유전자의 네트워크 모델 구축)

  • Lee, Gi-Ho;Yu, Jae-Gyeong;Park, Ji-Hyun;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.684-693
    • /
    • 2014
  • Abiotic stress conditions such as cold, drought, and salinity trigger physiological and morphological changes and yield loss in plants. Hence, plants adapt to adverse environments by developing tolerance through complex regulation of genes related to various metabolic processes. This study was conducted to construct a coexpression network for multidirectional analysis of salt-stress response genes in Brassica rapa (Chinese cabbage). To construct the coexpression network, we collected KBGP-24K microarray data from the B. rapa EST and microarray database (BrEMD) and performed time-based expression analyses of B. rapa plants. The constructed coexpression network model showed 1,853 nodes, 5,740 edges, and 142 connected components (correlation coefficient > 0.85). On the basis of the significantly expressed genes in the network, we concluded that the development of salt tolerance is closely related to the activation of $Na^+$ transport by reactive oxygen species signaling and the accumulation of proline in Chinese cabbage.

Growth and Physiological Adaptations of Tomato Plants (Lycopersicon esculentum Mill) in Response to Water Scarcity in Soil (토양 수분 결핍에 따른 토마토의 생육과 생리적응)

  • Hwang, Seung-Mi;Kwon, Taek-Ryun;Doh, Eun-Soo;Park, Me-Hea
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.266-274
    • /
    • 2010
  • This study aim to investigate fundamentally the growth and physiological responses of tomato plants in responses to two different levels of water deficit, a weak drought stress (-25 kPa) and a severe drought stress (-100 kPa) in soil. The two levels of water deficit were maintained using a micro-irrigation system consisted of soil sensors for the real-time monitoring of soil water content and irrigation modules in a greenhouse experiment. Soil water contents were fluctuated throughout the 30 days treatment period but differed between the two treatments with the average -47 kPa in -25 kPa set treatment and the -119 kPa in -100 kPa set treatment. There were significant differences in plant height between the two different soil water statuses in plant height without differences of the number of nodes. The plants grown in the severe water-deficit treatment had greater accumulation of biomass than the plants in the weak water-deficit treatment. The severe water-deficit treatment (-119 kPa) also induced greater leaf area and leaf dry weight of the plants than the weak water-deficit treatment did, even though there was no difference in leaf area per unit dry weight. These results of growth parameters tested in this study indicate that the severe drought could cause an adaptation of tomato plants to the drought stress with the enhancement of biomass and leaf expansion without changes of leaf thickness. Greater relative water content of leaves and lower osmotic potential of sap expressed from turgid leaves were recorded in the severe water deficit treatment than in the weak water deficit treatment. This finding also postulated physiological adaptation to be better water status under drought stress. The drought imposition affected significantly on photosynthesis, water use efficiency and stomatal conductance of tomato plants. The severe water-deficit treatment increased PSII activities and water use efficiency, but decreased stomatal conductance than the weak water-deficit treatment. However, there were no differences between the two treatments in total photosynthetic capacity. Finally, there were no differences in the number and biomass of fruits. These results suggested that tomato plants have an ability to make adaptation to water deficit conditions through changes in leaf morphology, osmotic potentials, and water use efficiency as well as PSII activity. These adaptation responses should be considered in the screening of drought tolerance of tomato plants.

Antioxidant capacity in seedling of colored-grain wheat under water deficit condition

  • Kim, Dae Yeon;Hong, Min Jeong;Jung, Woo Joo;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.140-140
    • /
    • 2017
  • Nutritious and functional foods from crop have received great attention in recent years. Colored-grain wheat contains high phenolic compound and a large number of flavonoid. The anthocyanin and polyphenolic synthesis and accumulation is generally stimulated in response to biotic or abiotic stresses. Here, we analyzed genome wide transcripts in seedling of colored-grain wheat response to ABA and PEG treatment. About 900 and 1500 transcripts (p-value < 0.05) from ABA and PEG treatment were aligned to IWGSC1+popseq DB which is composed of over 110,000 transcripts including 100,934 coding genes. NR protein sequences of Poaceae from NCBI and protein sequence of transcription factors originated from 83 species in plant transcription factor database v3.0 were used for annotation of putative transcripts. Gene ontology analysis were conducted and KEGG mapping was performed to show expression pattern of biosynthesis genes related in flavonoid, isoflavonoid, flavons and anthocyanin biopathway. DroughtDB (http://pgsb.helmholtz-muenchen.de/droughtdb/) was used for detection of DEGs to explain that physiological and molecular drought avoidance by drought tolerance mechanisms. Drought response pathway, such as ABA signaling, water and ion channels, detoxification signaling, enzymes of osmolyte biosynthesis, phospholipid metabolism, signal transduction, and transcription factors related DEGs were selected to explain response mechanism under water deficit condition. Anthocyanin, phenol compound, and DPPH radical scavenging activity were measured and antioxidant activity enzyme assays were conducted to show biochemical adaptation under water deficit condition. Several MYB and bHLH transcription factors were up-regulated in both ABA and PEG treated condition, which means highly expressed MYB and bHLH transcription factors enhanced the expression of genes related in the biosynthesis pathways of flavonoids, such as anthocyanin and dihydroflavonols in colored wheat seedlings. Subsequently, the accumulation of total anthocyanin and phenol contents were observed in colored wheat seedlings, and antioxidant capacity was promoted by upregulation of genes involved in maintaining redox state and activation of antioxidant scavengers, such as CAT, APX, POD, and SOD in colored wheat seedlings under water deficit condition. This work may provide valuable and basic information for further investigation of the molecular responses of colored-grain wheat to water deficit stress and for further gene-based studies.

  • PDF

Changes of Drought Tolerance and Photosynthetic Characteristics of Populus davidiana Dode According to PEG Concentration (PEG농도에 따른 사시나무의 내건성과 광합성 특성의 변화)

  • Oh Chang-Young;Han Sim-Hee;Kim Yong-Yul;Lee Jae-Cheon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.4
    • /
    • pp.296-302
    • /
    • 2005
  • We investigated changes in photosynthetic characteristics of P. davidiana in order to understand damage patterns to photosynthetic apparatus under drought stress. Root sprout saplings of P. davildiana were treated with $0\%,\;2\%,\;5\%,\;and\;10\%$ of 300ml polyethylene glycol (PEG) once a weer far one month. After one month, we measured photosynthetic parameters and analyzed the photochemical and $CO_2$ fixation systems. Photosynthetic rate, stomatal conductance, and respiration rate in the leaves of P. davildiana decreased according to increasing stress strength. In the photochemical system, quantum yield of PSII was reduced by the increment of PEG concentration, The decrease of apparent quantum yield was related to reduction of electron transport. Respiration rate decreased with an increase in PEG concentration, whereas photorespiration rate in the $CO_2$ fixation system increased. In conclusion, photosynthesis of P. davidiana responded sensitively under drought stress, and the sensitivity depended upon the strength of water stress. P. davidiana exhibited an increase of water use efficiency under water stress.

Enhancement of Photosynthetic Characteristics and Antioxidant Enzyme Activities on Chili Pepper Plants by Salicylic Acid Foliar Application under High Temperature and Drought Stress Conditions (고온 및 건조 스트레스 조건 하에서 살리실산 경엽처리에 의한 고추의 광합성 특성 및 항산화효소 활성 증대)

  • Lee, Jinhyoung;Lee, Heeju;Wi, Seunghwan;Lee, Hyejin;Choi, Haksoon;Nam, Chunwoo;Jang, Seonghoe
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.311-318
    • /
    • 2022
  • Salicylic acid (SA), a phenolic compound, plays a pivotal role in regulating a wide range of physiological and metabolic processes in plants such as antioxidant cellular defense, photosynthesis, and biotic and abiotic stress responses during the growth and development. We examined the effect of exogenous SA application (100 mg·L-1) on the growth, yield, photosynthetic characteristics, lipid peroxidation, and antioxidant enzyme activity of chili pepper plants under high temperature and drought stress conditions. SA treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde and H2O2 were significantly lower in the third treatment of SA compared to the control. The activity of ascorbate peroxidase, catalase, peroxidase and superoxide dismutase, increased in treated plants by up to 247, 318, 55 and 54%, respectively compared to the nontreated control. There was no significant difference in the growth characteristics between SA-treated and nontreated plants, while the SA treatment increased marketable yield (kg/10a) by about 15% compared to the nontreated control. Taken together, these results suggest that foliar application of SA alleviates physiological damages caused by the combination of drought and heat stress, and enhances the photosynthetic capacity and antioxidant enzyme activities, thereby improving tolerance to a combination of water deficit and heat stress in chili pepper plants.